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Abstract—The identification of miRNA-disease associations
(MDAs) holds significant value in the field of disease diagno-
sis and treatment. Recently, computational prediction methods
have been increasingly proposed to detect potential MDAs,
so as to assist experimental verifications. Despite the success
of deep learning models, studies in the MDA prediction are
still limited by the datasets and the evaluation framework
employed. Concretely, existing datasets comprise only hundreds
of diseases, and the random-split-based evaluation framework
provides an overly optimistic estimate of the performance of
MDA prediction methods. In this study, we propose a novel
benchmark, Timely-MDA, for generalizable MDA prediction.
First, we construct a comprehensive dataset comprising a broad
scope of miRNA and disease entities and diverse semantic
features. Second, four existing MDA prediction methods are
implemented, and a new baseline is proposed based on our
dataset. Third, the performance of these methods is analyzed
using our timely-split evaluation framework. Overall, Timely-
MDA provides a robust data foundation for MDA modeling,
and enables quantitative estimation of the generalization ability
of MDA prediction methods. Data and code are available at
https://github.com/EchoChou990919/Timely-MDA.,

Index Terms—MDA prediction, Dataset, Evaluation

I. INTRODUCTION

MicroRNA (miRNA) is a class of non-coding RNA that
plays an important regulatory role in the living system by
influencing the output of protein-coding genes (PCGs) [[1]]. To
date, a considerable number of miRNA-disease associations
(MDAs) have been verified by biological experiments. It is
witnessed that miRNAs can serve as the biomarker in diseases,
and the identification of MDAs would pave the path for
medical diagnosis and treatment.

In recent years, deep learning techniques, particularly graph
neural networks, have greatly empowered the MDA prediction
models. Nevertheless, there is another persistent question:
whether the evaluation results in academics exactly demon-
strate the capability of MDA prediction methods in practical
applications. Unfortunately, we have observed two pitfalls in
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MDA prediction studies regarding the dataset and evaluation
framework, which result in insufficient exploration of miRNA-
disease space and over-optimistic estimation of MDA predic-
tion methods, respectively.

Dataset - Limited Entity Scope. Existing datasets mainly
utilize version-specific public databases such as HMDD
v2.0 [2] and v3.2 [3]]. During dataset construction, miRNAs
and diseases present in the database were identified as entities.
However, miRNAs and diseases without known associations
were implicitly excluded, which prevented subsequent predic-
tion models from further exploring unknown regions.

Evaluation Framework - Inappropriate Data Split. Ex-
isting evaluation frameworks usually split the MDA instances
into training and test sets randomly, so as to train the
models and calculate evaluation metrics. The random data
split assumes MDA instances are independent and identically
distributed. However, in reality, there is a sequential logic
in the identification of MDAs — Prospective explorations are
conducted based on the retrospective analyses. Therefore, the
random-split-based evaluation framework would induces over-
optimistic evaluation metrics, and fails to provide quantitative
estimation of the generalization ability of prediction methods.

To address these two pitfalls, we present a new benchmark
called Timely-MDA, including a richer dataset and a novel
evaluation framework. On this basis, we implement four
existing MDA prediction methods and newly propose a simple
yet effective baseline method. Experimental results indicate
that Timely-MDA brings challenges and oppotunities to the
field of MDA prediction.

II. DATASET CONSTRUCTION

In this section, we present the process of dataset construc-
tion, and provide the statistics of our dataset.
A. Determining MiRNA and Disease Entities

In this study, miRNA entities are determined based on
miRBase [4], an authoritatively acknowledged database that
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provides miRNA naming, sequences, and annotations. We
collect 1917 terms, which are all miRNAs discovered and
rigistered to date. Then, disease entities are determined based
on the Medical Subject Headings (MeSH) thesaurus, a hierar-
chically organized vocabulary. We obtain 5032 diseases with
authoritative endorsements.

B. Processing MDA Instances

Original MDA records are downloaded from HMDD
v3.2) [3]/v4.0 [S] and RNADisease| [6] in January 2024. We
decide to emerge these records to construct a comprehensive
dataset that presents all known MDAs as far as possible.

The data quality control is implemented from three per-
spectives, i.e., entity alignment, evidence confirmation, and
duplicate removal. First, both ends of MDA records are aligned
to the determined miRNA and disease entities. Considering the
names of miRNAs and diseases utilized in the literature could
be unnormalized, we should ensure that they indicate certified
entities unambiguously. Second, we should confirm that all
the MDA instances are supported by academic evidence. The
NCBI Entrez API package is employed to retrieve reference
information for the evidence articles. Third, we ensure that
each MDA instance is unique in the dataset while supported
by at least on piece of academic evidence.

Eventually, we obtained 69602 trustworthy MDA instances.
To the best of our knowledge, it’s an unparalleled scale in
MDA prediction studies.

C. Collection of Semantics Features

For each miRNA, one precursor sequence and two mature
sequences are extracted from miRBase. For each disease, we
adopt the textual heading and scope note from MeSH, which
conclude keywords and typical symptoms of the disease. Given
that miRNAs perform their regulatory function by targeting the
outputs of protein-coding genes (PCGs), we introduce PCGs
as auxiliary entities. By referencing the HGNC [7] database,
we identify the PCGs and document their names.

Furthermore, we acquire father-son relationships between
diseases by processing the hierarchical organization of MeSH,
retrieve homology kinship of miRNAs from miRBase, and get
de-duplicated records of PCG-PCG interactions from Human-
Net v3| [8]]. Besides, miRTarBase v9.0 [9]] shows records of
miRNA-PCG associations, which are also aligned to entities
and de-duplicated. DisGeNet 2020 [10] provides records of
PCG-disease associations, which are similarly processed.

D. Statistics

By taking entities as nodes and various relationships as
edges, our dataset can be formulated as an attributed miRNA-
PCG-disease graph. A conclusion is presented in Table [I}

III. EVALUTION FRAMEWORK

We propose a novel evaluation framework that takes the
time-based distribution shift of MDAs into account and en-
ables the comparison of the generalization ability of MDA
prediction methods.

TABLE I: Statistic of the MiRNA-PCG-Disease Graph

Node / Edge Number Node Attribute / Edge Semantics
miRNA 1917 pre- and mature sequences
disease 5032 text of MeSH heading and scope note

PCG 19257 text of name
miRNA-disease 69602 miRNA-disease association
miRNA-miRNA 4513 miRNA family membership
disease-disease 7855 disease father-Son relationship

PCG-PCG 972334 PCG interaction
miRNA-PCG 144625 miRNA-PCG interaction

PCG-disease 134796 PCG-disease association
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Fig. 1: Visualization of the Training and Test Sets

A. Data Split and Negative Sample Selection

The scientific process is retrospective-to-prospective, using
real-life evidence to inform future research. We used this
temporal pattern to model the dataset division. In this study,
we split the 51321 instances first verified on and before
2020 as the training set (~73.7%), and the 18281 instances
published after 2020 as the test set (~26.3%). For each MDA
instance (m,d) in the training set, we obtain a negative
sample by replacing the miRNA or disease end with another
unassociated one randomly. Each has a 50% chance of getting
the (m’,d) or (m,d’). Notably, it’s carefully constrained that
negative samples in the training and test sets do not repeat.
In addition, we aim to evaluate whether the MDA prediction
can be effectively generalized to novel diseases. Therefore,
the test set is split into “known” and “unknown” subsets: the
former involves 16563 MDA instances and 10277 negative
samples, and the latter contains 1725 positive samples and
8005 negative samples.

B. Visualization Analysis

Fig[T] visualizes our MDA samples in scatter plots, where
positive samples are represented as red dots and negative
samples are represented as blue dots. On the x-axis, 5032
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diseases are arranged from left to right according to the
“degree of known” from high to low, which indicates how
many times has the disease present as the tail of positive
samples in the training set. A similar observation can be made
with regard to the 1917 miRNAs on the y-axis.

By comparing the occupied area of the red dots with the
full miRNA-disease space, we can intuitively see that only a
small fraction of MDAs ( 0.72%) have been verified, and there
are still broad regions awaiting exploration. By comparing the
Fig.1a and Fig.1b, we find that the verified MDAs are spread
to more disease entities and further blank areas as time goes on
(before and after 2020). These observations meet the essential
goal of MDA prediction: we should identify potential MDAs
for forward-looking scientific research.

C. Evaluation Metrics

There are six widely used evaluation metrics in binary
classification problems, i.e., Accuracy, Precision, Recall, F1-
score, AUC, and AUPR. To quantatively assess the overall
performance and the generalization ability of MDA prediction
methods, we tend to calculate all six metrics on the full test
set first, and then prioritize analysis of the AUC and AUPR
values from the unknown subset.

IV. EXPERIMENTS

In computational experiments, we primarily investigate the
following research questions:

« RQI1: How well do existing MDA prediction methods
perform on our benchmark? Whether they lack general-
ization ability?

e RQ2: Can we propose a new baseline method that
achieves superior MDA prediction performance by mak-
ing better use of our dataset?

e RQ3: Compared to the traditional random-split-based
evaluation framework, how is the rationality of our
timely-split-based evaluation framework?

A. Performance of Existing Baseline Methods

We implemented four state-of-the-art baseline methods
on the Timely-MDA benchmark, namely NIMCGCN [11]],
DFELMDA [12], AGAEMD [13], MINIMDA [14]. During
the reproduction process, we recalculate all relevant similarity
features based on our dataset, and the problem of information
leakage is carefully prevented.

In Table [lI} the first four rows present the evaluation results
of these baseline methods. It’s obvious that MINIMDA out-
performs other methods on most metrics. MINIMDA achieves
the highest AUC, AUPR, and Precision in terms of the full
test set, presents the best AUC on the known subset, and
exhibits optimal AUC and AUPR on the unknown subset.
Notably, there exists a significant performance gap between
known and unknown subsets for all methods. As exemplified
by MINIMDA, the AUC is 0.818 on the known subset while
only 0.679 on the unknown subset. Since AUC is determined
by the true positive rate and the false positive rate with all
possible thresholds, a higher AUC is achieved when a greater
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Fig. 2: Architectural Components of PLM-HGNN.

proportion of positive samples are accurately predicted with
top-ranked MDA probability scores. Therefore, it is evident
that MINIMDA encounters greater challenges when predicting
MDAs for unknown diseases. The same holds true for other
methods, accurate predictions are biased toward the well-
known diseases.

So, here is the answer to RQ1: By analyzing the benchmark
results, it is witnessed that existing MDA prediction methods
are limited in the generalization ability.

B. PLM-HGNN: A New Baseline Method

Existing MDA prediction methods generally rely on pre-
extracted similarity features, which limits their generalization
ability. To break through this bottleneck, we propose a simple
yet effective method, PLM-HGNN, which can make full use
of our dataset.

Fig] is an overview of PLM-HGNN. Firstly, Pre-
trained Langauge Models (i.e., RNA-FM]| [14] and PubMed-
BERT [15]) can generate informative vector representations
for heterogeneous node attributes. Secondly, an MDA pre-
diction model, based on Heterogeneous Graph Neural Net-
works [16]], learns the topology and attribute information in the
miRNA-PCG disease graph. Thirdly, the final miRNA-disease
embeddings are projected into MDA probability scores.

Table[ll shows PLM-HGNN’s excellent performance on
Timely-MDA, especially in terms of the generalization ability.
PLM-HGNN not only advances the AUC, accuracy, recall and
Fl-score on the full test set, but also achieves the highest
AUC of 0.741 and the top AUPR of 0.354 on the unknown
subset, which exhibit a 9.13% and 21.65% improvement over
MINIMDA. Meanwhile, we highlight that there is scope for
enhancement in the performance of PLM-HGNN.

In conclusion, we can answer RQ2: Our dataset can be
mined for advanced MDA prediction, and PLM-HGNN is
freshly proposed as an effective baseline method.

C. Performance Gap between Traditional and Novel Evalua-
tion Frameworks

As previously stated, we suspect that the random-split-
based evaluation framework can result in an over-optimistic
estimation of MDA prediction. To ascertain whether this is
true, we have conducted experiments under the traditional
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TABLE II: Performance of Baseline Methods

Method Test Set _ Known Subset Unknown Subset
AUC AUPR | Accuracy | Precision Recall Fl-score AUC | AUPR AUC AUPR
NIMCGCN 0.773 0.732 0.650 0.776 0.421 0.546 0.776 | 0.817 0.614 0.229
DFELMDA 0.827 0.831 0.737 0.855 0.570 0.684 0.804 | 0.889 0.556 0.22
AGAEMD 0.818 0.829 0.744 0.837 0.606 0.703 0.800 | 0.862 0.54 0.183
MINIMDA 0.841 0.840 0.715 0.880 0.497 0.635 0.818 | 0.867 0.679 0.291

[ PLM-HGNN [ 0.845 A ] 0833 [ 0749 A | 0831 [ 0.627 A [ 0.714 A ] 0.811 [ 0.858 [ 0.741 A [ 0.354 A |

Note: Best in existing baselines; Improved by the new baseline A

TABLE III: Performance of Baseline Methods Under Random-
Split-Based Evaluation Framework

Method AUC | AUPR | ACC P R Fl1
NIMCGCN | 0.855 | 0.843 0.76 | 0.708 | 0.893 | 0.79
DFELMDA | 0933 | 0924 | 0.862 | 0.863 | 0.865 | 0.864
AGAEMD 0.937 | 0938 | 0.864 | 0.857 | 0.879 | 0.867
MINIMDA 0916 | 0917 | 0.845 | 0.846 | 0.847 | 0.847

PLM-HGNN | 0917 | 0915 | 0.839 | 0.824 | 0.867 | 0.845

random data split as well. Comparing to our timely-split-
based dataset, a random-split-based dataset constructed here
maintains an equal training/test proportion, and employs the
same engative sample selection strategy. The four baseline
methods and PLM-HGNN are trained and evaluated on this
random-split-based dataset, and the six evaluation metrics are
calculated as well.

By comparing Table and Table [l we find that each
method demonstrates notable disparities in prediction perfor-
mance across the traditional and novel evaluation framework.
Numerically speaking, the traditional random data split paints
a more optimistic picture of all MDA prediction methods,
while our timely-split-based evaluation framework makes the
prediction more challenging. Focusing on the relative as-
sessment between baseline methods, it is acknowledged that
the evaluation results derived from the two frameworks are
synchronized to a certain extent. DFELMDA and AGAEMD
perform similarly and seem skilled in fitting the distribu-
tion of training data, while MINIMDA and PLM-HGNN are
competitive with each other and are considered with better
generalization ability.

In conclusion, we can answer RQ3: Our timely-split-based
evaluation framework exhibits sufficient rationality. It provides
consistent relative estimations between MDA prediction meth-
ods yet presents a less optimistic situation.

V. CONCLUSION AND DISCUSSION

In this study, we propose Timely-MDA—a benchmark for
generalizable MDA prediction. First, we construct a dataset
that encompasses a broad scope of authorized entities, multi-
source integrated MDA instances, and rich semantics fea-
tures. Second, we introduce a timely-split-based evaluation
framework that simulates the retrospect to-prospect scene of
scientific exploration. In experiments, it is demonstrated that
Timely-MDA provides challenges and oppotunities in advanc-
ing the generalization ability of MDA prediction methods.
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