#### **GBDT4CTRVis:**

# Visual Analytics of Gradient Boosting Decision Tree for Advertisement Click-Through Rate Prediction

Wenwen Gao, Shangsong Liu, Yi Zhou, Fengjie Wang, Feng Zhou, Min Zhu\*

Sichuan University

**Speaker: Yi Zhou** 

时间: 2023年7月23日 10:30-12:00

地址:融汇丽笙酒店一楼天空厅

#### CONTENTS

**BACKGROUND** 

**SYSTEM OVERVIEW** 

VISUALIZATION

**EVALUATION** 



The 10th China Visualization and Visual Analytics Conference

#### **BACKGROUND**

What is advertisement click-through rate (CTR) prediction?

## Predicting whether Users will click on Ads displayed on certain digital Media

Exposing ads more accurately to target users in order to reduce advertising costs and increase ads revenue.











#### **BACKGROUND**

**How** to predict advertisement CTR?

Advertising analysts build CTR prediction models

Gradient Boosting Decision Tree (GBDT) is a widely used



Fail to understand the impact of different features and analyze the decision-making and the iterative evolution process

Difficulty in model tuning

#### **BACKGROUND**

Existing studies have shown that **interactive visualization** can provide **interpretability** to models and help overcome challenges in model development



Existing studies do not analyze the **correlations between features** and do not support the distinction of different **categories of features** (ads, media, and users)



Existing studies are difficult to explore the iterative evolution process of a large number of decision trees



Existing studies do not support the global analysis from the instance, feature, and model levels.

#### CONTENTS

**BACKGROUND** 

**SYSTEM OVERVIEW** 

VISUALIZATION

**EVALUATION** 



#### **SYSTEM OVERVIEW**

What do we need to do? How do we do it?

#### **Requirements Analysis**

R1: Explore the model's prediction results at the instance level.

R2: Analyzing model decision-making basis at the feature level.

R3: Understanding the model's decision-making mechanism at the model level.

**GBDT4CTRVis** helps advertising analysts understand the working mechanism of the GBDT-based CTR prediction model through **the instance**, **feature and model level** and facilitate the tuning process.





#### **SYSTEM OVERVIEW**

Pipeline of **GBDT4CTRVis**.

Consists of four main modules:

- Data preprocessing
- Model construction
- Analysis and computation
- Visualization and interaction







#### **SYSTEM OVERVIEW**

#### ① Data preprocessing

- The advertising CTR prediction dataset is publicly available from the Huawei 2020 DIGIX algorithm competition
- Each record has 36 fields, one is the label for advertising click behavior (0 or 1), and the remaining 35 fields can be divided into three categories of features: ad, medium, and user
- We first perform data cleaning and downsampling of the dataset

#### ① Model construction

- Implement the GBDT model by **LightGBM**
- There are four main hyperparameters: 1. Maximum number of leaf nodes of the decision tree (num\_leaves), 2. Maximum depth of the decision tree (max\_depth), 3. Number of decision tree (n\_estimators), 4. Learning rate (learning\_rate)

#### CONTENTS

**BACKGROUND** 

**SYSTEM OVERVIEW** 

**VISUALIZATION** 

EVALUATION



#### **VISUALIZATION**

A: Control Panel

B, C, D: Instance-level Views

**G, H**: Feature-level Views

E, F: Model-level Views



#### **VISUALIZATION**

B, C, D: Instance-level Views

Hexagonal bining: Data Overview

 uses hexagons to aggregate similar data samples that fall within its boundaries after dimensionality reduction by UMAP

Rose charts: **Data Statistics** 

Table: Data Details





#### **VISUALIZATION**

G, H: Feature-level Views

List combined with dual-axis plot: Feature Importance

 Feature importance represents the number of times the feature is selected as the splitting feature in all decision trees

Node-link chart: Feature Correlation

Spearman's correlation coefficient



#### **VISUALIZATION**

E, F: Model-level Views

Icicle: the most representative K Decision Trees

- Zhang-Shasha algorithm calculates the tree edit distance
- K-Medoids algorithm clusters the trees using a tree distance matrix

Area: evolution of the tree size

Streamgraph: evolution of the information gain



### China Uis 2023

#### CONTENTS

**BACKGROUND** 

**SYSTEM OVERVIEW** 

**VISUALIZATION** 

**EVALUATION** 





#### **EVALUATION**

**Case Study** 

#### **EVALUATION**

Case Study Analyzing and
selecting features



#### **EVALUATION**

Case Study Analyzing and Tuning
Model Structures







(b) num\_leaves=100, max\_depth=12

#### **EVALUATION**

#### **Expert Evaluation**



#### CONTENTS

**BACKGROUND** 

**SYSTEM OVERVIEW** 

**VISUALIZATION** 

**EVALUATION** 



#### **CONCLUSION**

**GBDT4CTRVis** helps advertising analysts **understand** the working mechanism of GBDT-based CTR prediction model from three levels: **instance, feature, and model**, and facilitate the process of **model tuning** 

#### **Limitation & Future Work**

- Improving system response time: Using high-performance devices and optimizing the time complexity of algorithms.
- Enriching model tuning strategies: Applying more parameter optimization techniques such as grid search.
- Optimizing visualization and interaction design: Enriching the system's functionality.
- **Generalization**: Applied to other fields that use GBDT for binary prediction.

# THANK YOU FOR LISTENING

Wenwen Gao, Shangsong Liu, Yi Zhou, Fengjie Wang, Feng Zhou, Min Zhu\*

**Sichuan University** 

中国•重庆

**Chongqing•China** 

