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Abstract

The identification of long noncoding RNA (lncRNA)-disease associations is of great value for disease diagnosis and treatment, and it is
now commonly used to predict potential lncRNA-disease associations with computational methods. However, the existing methods do
not sufficiently extract key features during data processing, and the learning model parts are either less powerful or overly complex.
Therefore, there is still potential to achieve better predictive performance by improving these two aspects. In this work, we propose a
novel lncRNA-disease association prediction method LDAformer based on topological feature extraction and Transformer encoder. We
construct the heterogeneous network by integrating the associations between lncRNAs, diseases and micro RNAs (miRNAs). Intra-class
similarities and inter-class associations are presented as the lncRNA-disease-miRNA weighted adjacency matrix to unify semantics.
Next, we design a topological feature extraction process to further obtain multi-hop topological pathway features latent in the adjacency
matrix. Finally, to capture the interdependencies between heterogeneous pathways, a Transformer encoder based on the global self-
attention mechanism is employed to predict lncRNA-disease associations. The efficient feature extraction and the intuitive and
powerful learning model lead to ideal performance. The results of computational experiments on two datasets show that our method
outperforms the state-of-the-art baseline methods. Additionally, case studies further indicate its capability to discover new associations
accurately.

Keywords: lncRNA-disease association, topological feature extraction, Transformer, global self-attention mechanism

Introduction
Long noncoding RNA (lncRNA) is a type of noncoding RNA with
a length of more than 200 nucleotides [1]. It plays an important
molecular regulatory role in biological life activities and is closely
related to the occurrence and development of many diseases [2].
For example, AB007962 is downregulated in gastric cancer and
associated with a poor prognosis [3]. AATBC regulates Pinin to
promote metastasis in nasopharyngeal carcinoma [4]. 91H is asso-
ciated with poor development in colorectal cancer by modifying
HNRNPK expression [5].

So far, lots of lncRNA-disease associations (LDAs) have been
validated through biological experiments, but due to the high cost
of time and resources, the further advancement of which could be
greatly limited. Based on known experimental data, an increasing
number of computational methods are proposed to predict LDAs
to address such shortcomings. Here, we summarize the existing
computational methods into two categories: one is traditional
machine learning-based, and the other is deep learning-based.

Chen et al. [6] proposed an essential assumption that
similar diseases tend to be associated with functionally similar
lncRNAs. Thus, the association and similarity information is
commonly integrated and utilized. Traditional machine learning-
based methods apply matrix operations, network propagation

algorithms and classifiers. MFLDA [7] decomposed data matrices
into low-rank matrices via matrix tri-factorization, optimized
data integration weights and low-rank matrices, then recon-
structed the LDA matrix as predictions. SIMCLDA [8] extracted
lncRNA and disease features by similarity computation and prin-
cipal component analysis, and then completed the association
matrix based on the inductive matrix completion framework.

Network propagation algorithms can capture potential topol-
ogy features, of which random walk is the most commonly used.
RWRHLD [9] integrated an lncRNA-disease heterogeneous net-
work, and then implemented the random walk with restart (RWR)
algorithm to prioritize candidate LDAs. IRWRLDA [10] incorpo-
rated lncRNA expression similarity and disease semantic similar-
ity to set the initial probability vector of RWR, thereby improving
the LDA prioritization performance on the lncRNA-disease net-
work. LDA-LNSUBRW [11] obtained the interaction possibility of
unknown LDAs by pretreatment and predicted the potential asso-
ciations based on linear neighborhood similarity and unbalanced
bi-random walk. As a topological representation of the network,
the adjacency matrix is critical. Ping et al. [12] constructed an
lncRNA-disease bipartite network and calculated the dot product
of the adjacency and similarity matrices as predictive values,
which also inspired our topological feature extraction process.
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With the low-dimensional representations of lncRNAs and dis-
eases, researchers utilize machine learning classifiers to deter-
mine if the given lncRNA–disease pairs are associated. LRLSLDA
[6] developed a semi-supervised LDA prediction framework based
on Laplacian regularized least squares. LDAP [13] fused similarity
matrices of lncRNAs and diseases and predicted potential LDAs by
bagging support vector machine. Among the traditional machine
learning classifiers applied to LDA prediction, random forest (RF)
performs well and is adopted by many methods such as DisLncRF
[14], RFLDA [15] and IPCARF [16].

Deep learning has been widely applied in bioinformatics [17].
Compared with traditional machine learning algorithms, deep
learning algorithms have stronger nonlinear fitting capabilities
and are more flexible in applications, allowing for end-to-end low-
dimensional representation extraction and classification predic-
tion. Here, multilayer perceptron (MLP) and convolutional neural
network (CNN) have shown promising performance. DMFLDA [18]
designed a cascade of hidden layers to learn latent representa-
tions of lncRNAs and diseases, thus capturing the complex non-
linear LDA relationships. SDLDA [19] integrated features extracted
through singular value decomposition and MLP, followed by LDA
predictor of another perceptron. Xuan et al. [20–22] utilized the
association and similarity information among lncRNAs, diseases
and miRNAs, and further exploited the topological structures
formed by them; such an idea of feature integration is now widely
used in LDA predictions. They also proposed three CNN-based
models: CNNLDA [20], CNNDLP [21] and LDAPred [22]. CNNLDA
constructed a dual CNN-based model for learning the global and
attention representations, CNNDLP made a combination of atten-
tion mechanism and CNN autoencoder and LDAPred designed a
dual CNN predictive model for original and topological features.

Among the deep learning-based methods, graph neural net-
work (GNN) algorithms take into account both nonlinear fitting
and local topology learning to a certain extent. Due to the graph
nature of association studies, in recent years, with the devel-
opment of GNNs, they have been increasingly adopted in LDA
predictions. GAMCLDA [23] utilized graph convolutional network
(GCN) to encode node features and local graph structure, then
reconstructed the LDA matrix by the inner product. VGAELDA
[24] integrated variational inference and graph autoencoders for
LDA prediction, where variational graph autoencoders (VGAE)
inferred representations from features and graph autoencoders
propagated labels via known LDAs. HGATLDA [25] incorporated
node feature structural graphs and the lncRNA-disease topologi-
cal structural graph, then developed a novel heterogeneous graph
attention (HGAT) network framework based on meta-paths.

Moreover, several methods combined various traditional
machine learning and deep learning algorithms. GCNLDA [26]
processed node features with an attention mechanism, followed
by prediction with CNN and GCN branches. GAERF [27] learned
node embeddings via graph autoencoder and performed binary
classification by RF. GCRFLDA [28] constructed an encoder
consisting of GCN, MLP and conditional random field with an
attention mechanism. VADLP [29] combined random walk, con-
volutional autoencoder, variance autoencoder and MLP. MGATE
[30] utilized three graph autoencoders to learn multiple graph
representations and merged them using an attention mechanism,
followed by RF for prediction. GTAN [31] encoded the neighbor
topologies with multiple graph attention neural networks and
encoded the node attributes with attention mechanism, CNN and
MLP. While improving prediction performances, the frameworks
of the latest LDA prediction methods have become increasingly
complex.

Although the methods above have achieved good performance,
there is still space for improvement. On the one hand, it is inef-
ficient to utilize the raw similarity and association information,
and the extensive model computation without extracting key
information in advance can blur the node embedding semantics
and thus weaken the classification performance. On the other
hand, the relatively limited performance gained from the complex
model structures suggests that they do not fit well enough with
the underlying assumptions of the LDA prediction.

To address such shortcomings, we propose an intuitive LDA
prediction method LDAformer based on topological feature
extraction and Transformer encoder [32]. Our main contributions
are summarized as follows:

• We treat similarity and association information as the
connectivity between nodes uniformly and construct the
lncRNA-disease-miRNA weighted adjacency matrix.

• We design a multi-hop topological feature extraction process,
obtaining the input features with explicit pathway semantics.

• We adopt the Transformer encoder as the LDA predictor; the
powerful global self-attention mechanism could capture the
interdependencies hidden in topological pathways.

• Experimental results indicate that LDAformer outperforms
the state-of-the-art methods. Case studies further illustrate
its promising predictive capability.

Materials
Datasets
In this study, to demonstrate the effectiveness of LDAformer, we
evaluate it on two datasets:

• Dataset1 from Fu’s work [7] is widely referenced as a reliable
benchmark dataset. It contains 240 lncRNAs, 412 diseases,
495 miRNAs and 2697 LDAs from Lnc2Cancer [33], LncR-
NADisease [34], GeneRIF [35], 1002 lncRNA-miRNA associa-
tions from starBase v2.0 [36], 13 562 miRNA-disease associa-
tions (MDAs) from HMDD v2.0 [37].

• Dataset2 is integrated by ourselves, the data and detailed pro-
cessing code are available at https://github.com/EchoChou
990919/LDAformer. It contains 665 lncRNAs, 316 diseases,
295 miRNAs and 3833 LDAs from Lnc2Cancer v3.0 [38],
LncRNADisease v2.0 [39], 2108 lncRNA-miRNA associations
from starBase v2.0, 8540 MDAs from HMDD v3.2 [40]. Disease
semantic information is obtained from the Disease Ontology1

[41]. MeSH2 and miRBase [42] assist in determining node
names.

With the version update of original public databases, the exper-
imental LDAs in dataset2 are more comprehensive. Therefore, it is
more valuable to predict LDAs on dataset2 and at the same time
more challenging due to the sparsity of associations.

Disease semantic similarity
Computational predictions of LDAs are generally based on the
assumption that functionally similar lncRNAs tend to be associ-
ated with phenotypically similar diseases. Therefore, we obtain
the disease semantic information from Disease Ontology, which
represents the parent–child relationship between diseases in the
data structure of a directed acyclic graph.

1 https://disease-ontology.org/
2 https://www.ncbi.nlm.nih.gov/mesh/

https://github.com/EchoChou990919/LDAformer
https://disease-ontology.org/
https://www.ncbi.nlm.nih.gov/mesh/
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Then we calculate disease similarities using Wang’s method
[43]. For disease t1, assuming T1 is the set involving t1 and all of
its ancestor terms, the semantic contribution values of all terms
in T1 to t1 can be measured as follows:

St1 (t) =
⎧⎨
⎩

1, t = t1

max
t′∈children of t

(
St1 (t′)

2

)
, t ∈ T1 and t �= t1

. (1)

For any other disease t2, the semantic similarity between t1 and
t2 is defined as

Sim(t1, t2) =
∑

t∈T1∩T2
(St1 (t) + St2 (t))

SV(t1) + SV(t2)
, (2)

where SV(t1) = ∑
t∈T1

St1 (t) presents the summation of all the
semantic contribution values of T1, and ditto for SV(t2). Semantic
similarity describes the overlap ratio of their ancestor terms, with
the closer the ancestor greater the weight.

LncRNA/miRNA functional similarity
Subsequently, lncRNA/miRNA functional similarities are mea-
sured according to Wang et al. [44] based on the calculated disease
similarities and known LDAs.

For lncRNA/miRNA r1 and r2, assuming that there are n1 dis-
eases associated with r1 and n2 diseases associated with r2, these
diseases can be denoted as t1i, (1 ≤ i ≤ n1) and t2j, (1 ≤ j ≤ n2), thus
the functional similarity between r1 and r2 is given by

Sim(r1, r2) = 1
n1 + n2

[
n1∑

i=1

max
1≤j≤n2

(Sim(t1i, t2j))

+
n2∑

j=1

max
1≤i≤n1

(Sim(t2j, t1i))

⎤
⎦ . (3)

LncRNA-disease-miRNA weighted adjacency
matrix
For a dataset with l lncRNAs, m miRNAs and d diseases, the inter-

class association matrices are defined as

⎧⎪⎨
⎪⎩

ALD ∈ Rl×d

ALM ∈ Rl×m

ADM ∈ Rd×m

, where

the value at the corresponding position is 1 if there is an exper-
imental association, 0 otherwise. And the intra-class similarity

matrices are defined as

⎧⎪⎨
⎪⎩

SL ∈ Rl×l

SD ∈ Rd×d

SM ∈ Rm×m

, where the corresponding

values are the calculated functional or semantic similarities. In
particular, the self-similarities on the diagonal are all set to 0.

Viewing the dataset as a heterogeneous network, both the
associations and similarities can be treated as the connectivities
between nodes. So the above association and similarity matrices
can be concatenated into a complete weighted adjacency matrix:

A =
⎡
⎢⎣ SL ALD ALM

AT
LD SD ADM

AT
LM AT

DM SM

⎤
⎥⎦ , (4)

where AT
LD, AT

LM and AT
DM denote the transpose of ALD, ALM and ADM.

LDAformer
Based on the lncRNA-disease-miRNA weighted adjacency matrix,
we propose an end-to-end LDA prediction method LDAformer, and
the flowchart is shown in Figure 1. LDAformer consists of three
parts: the topological feature extraction process, the Transformer
encoder and the prediction layer.

Topological feature extraction process
According to the definition of matrix multiplication, the power
of the adjacency matrix represents multi-hop connectivities
between network nodes [45]. Thus, we propose a simple process
to extract the multi-hop topology information:

Anh =
{

A, nh = 1
norm(Anh−1A), nh > 1

, (5)

norm(A) = Adiag0

max(Adiag0)
, (6)

where Adiag0 denotes matrix A with the diagonal set to 0. For any
two nodes, the value at the corresponding position of Anh is the
normalized sum of the products of the n-hop weights between
the nodes. For the i-th node lncRNA ni and the j-th node disease
nj, the topological feature X is obtained as

X =
[
A∗,i; A∗,j; A2

∗,i; A2
∗,j; · · · ; Anh

∗,i; Anh
∗,j

]
Win, (7)

where Anh
∗,i and Anh

∗,j denote the i-th and j-th columns of Anh , and

Win ∈ R2nh×dmodel is a learnable matrix to make a linear transforma-
tion. Here, X ∈ R(l+d+m)×dmodel has an explicit implication, in which
the k-th row Xk,∗ =

[
Ak,i; Ak,j; A2

k,i; A2
k,j; · · · ; Anh

k,i; Anh
k,j

]
Win(1 ≤ k ≤

l + d + m) indicates the linearly transformed 2, 3, 4, · · · , 2nh hop
pathways between lncRNA ni and disease nj mediated by the node
nk.

Transformer encoder
As a powerful deep learning model based on global self-attention,
Transformer has shown excellent performance in understand-
ing the long-range interdependencies of data. In LDAformer, we
employ only the encoder part. In contrast to the graph attention
neural network which learns neighborhood topology features, the
Transformer encoder computes scaled dot product attention at
the global scale, capturing the interdependency between any two
topological pathways. And other common self-attention mech-
anisms are often used just for merging features and bridging
algorithm modules, while the Transformer encoder is the only
core learning module in our method.

Encoder stacks
The encoder of Transformer is a stack of N identical layers, where
N is set to 6 by default, and each contains two sub-layers: multi-
head attention and feedforward network. For each sub-layer, a
residual connection is employed, followed by a layer normaliza-
tion. Such a process can be described mathematically as

H(X) = layerNorm(X + subLayer(X)), (8)

where subLayer(X) is the calculation implemented by multi-head
attention or feedforward network, then H(X) is the output of each
sub-layer.
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Figure 1. The flowchart of LDAformer. (A) The weighted adjacency matrix of lncRNA-disease-miRNA heterogeneous network. (B) The topological feature
extraction process. It obtains model input features containing 2, 3, 4, · · · , 2nh-hop pathways between lncRNA ni and disease nj. (C) The Transformer
encoder. It captures the interdependencies between topological pathways and then outputs the predicted LDA score through a prediction layer.

Multi-head attention
Figure 2 shows the calculation process of multi-head attention.
Scaled dot product attention has three inputs: Q (query), K (key),
V (value), and dK is the channel dimension of K. It is defined as

Attention(Q, K, V) = softmax(
QKT√

dK

)V, (9)

softmax(xi) = exp(xi)∑
j exp(xj)

. (10)

Multi-head attention splits the scaled dot product attention
into nhead heads, where nhead is set to 2 by default. For each head,
firstly three parallel linear transformations convert input X to Q,
K and V:

Qi = XWQ
i , (11)

Ki = XWK
i , (12)

Vi = XWV
i , (13)

where 1 ≤ i ≤ nhead, WQ
i , WK

i , WV
i ∈ Rdmodel×(dmodel |nhead) are learn-

able parameters. Then the outputs of each head are aggregated
together:

MHA(X) = concat(head1, · · · , headnhead )W
O, (14)

headi = Attention(Qi, Ki, Vi), (15)

where WO ∈ R(dmodel |nhead)∗nhead×dmodel makes another linear transforma-
tion, and MHA(X) is the overall output of multi-head attention.

Feedforward network
Feedforward network is a two-layer neural network separated by
a ReLU activation:

FFN(X) = max(0, XW1 + b1)W2 + b2, (16)

where W1 ∈ Rdmodel×(dff ∗dmodel), W2 ∈ R(dff ∗dmodel)×dmodel , and dff is set to 2
by default.

Prediction layer
Prediction layer performs a simple aggregation on the flattened
output of the self-attention layer, followed by a sigmoid activation
to obtain the predicted LDA score p:

p = sigmoid(f latten(Xencoded)Wout + bout), (17)

sigmoid(x) = 1
1 + e−x

, (18)

where Wout ∈ R(l+d+m)∗dmodel×1. Finally, binary cross-entropy is used
as the loss function for optimizing LDAformer, which is defined as

Loss = −
∑

[ylog(p) + (1 − y)log(1 − p)], (19)

where y denotes the ground-truth label, y = 1 if there are
experimental association records between lncRNA ni and disease
nj included in the dataset, otherwise y = 0.
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Figure 2. The calculation process of multi-head attention [32].

Experiments
Experimental environment and evaluation
metrics
LDAformer is implemented in Python 3.8.8 and Pytorch 1.10.0; all
experiments are conducted on an NVIDIA RTX 3090 GPU with
24GB memory. The codes are available at https://github.com/
EchoChou990919/LDAformer, including the model itself, training
and testing parts, default parameter settings and a demo of
trained models. For dataset 1, training takes about 120 s, and
testing takes about 30 s (0.35 ms/per lncRNA–disease pair). For
dataset 2, training takes about 70 s, and testing takes about 85 s
(0.423 ms/per lncRNA–disease pair).

In the experiments, 5-fold cross-validation is used to evaluate
the performance of LDAformer. For each dataset, we take the
known LDAs as positive samples and the unknown LDAs as nega-
tive samples. All positive samples are split into five subsets, four
of which and equal-sized randomly selected negative samples
used for training, and the rest one and all the remaining negative
samples are used for testing. At the same time, the weighted
adjacent matrix A is reconstructed: the corresponding values of
the test positive samples in ALD and AT

LD are set to 0, and lncRNA
functional similarities in SL are also recalculated.

Two classic metrics are adopt for evaluation:

• AUC is the area under the Receiver Operating Characteristic
(ROC) curve, which is typically used in binary classification to
study the output of a classifier.

• AUPR is the area under the Precision-Recall (PR) curve, which
is a useful measure of prediction when the classes are very
imbalanced.

Effect of topological feature extraction
There are two significant operations in the topological feature
extraction process of LDAformer: (1) For the lncRNA–disease pair
to be predicted, the concatenation of the corresponding columns
in A, A2, · · · , Anh . (2) A linear transformation that converts the
dimensionality of the topological feature to dmodel.

Setting other hyperparameters to default values, for nh and
dmodel, we perform a grid search to analyze the effectiveness of
the feature extraction processes. nh is selected from {1, 2, 3, 4},
In particular, when nh = 1, (1) does not work. And dmodel is set from
{4, 6, 8, 10, 12, 14, 16}, moreover, a False state is added to eliminate
the effect of (2).

As shown in Figure 3, the two operations are effective indi-
vidually and work best when properly combined. Operation (1)
introduces the valuable multi-hop topological information, while
operation (2) adjusts the dimensionality of the input feature
to make it appropriate for the calculation of the Transformer
encoder. More experimental results on both datasets are given in
Supplementary Data 1. From the experimental results, there are
several comparable settings. Considering the performance of our
method on both metrics, nh and dmodel are set to 3 and 12 for dataset
1, and 3 and 6 for dataset 2.

Parameter analysis
In this section, we estimate the influence of three important
hyperparameters with grid research: the number of attention
heads nhead changed from {1, 2, 3, 4}, the number of encoder layers
nl selected from {2, 4, 6, 8} and the size ratio of hidden units
in the feedforward network dff chosen from {0.5, 1, 2, 4}. There
are multiple sets of hyperparameters that can achieve optimal
results. Ultimately, nh, nl and dff are set to 1, 4 and 0.5 for dataset
1, 3, 2, and 1 for dataset 2.

As Figure 4 shows, we plot analysis histograms with the X-
axis showing one unfixed hyperparameter and the Y-axis showing
the AUC and AUPR values. It’s apparent that our method is
parameter insensitive, the evaluation metrics do not fluctuate
significantly due to changes in a single parameter. For the full
results of the grid search see Supplementary Data 2. Overall, for
dataset 1, LDAformer with fewer hidden units, fewer heads and
more layers performs better. For dataset 2, LDAformer suits with
fewer hidden units, more heads and fewer layers. The situation
varies in the two datasets, probably due to the differences in LDA
sparsity. In the case of more sparse valid information, multiple
heads jointly attend to information from different representation

https://github.com/EchoChou990919/LDAformer
https://github.com/EchoChou990919/LDAformer
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Figure 3. The effectiveness of our topological feature extraction process on dataset1. The nh on the vertical axis indicates that the extracted features
contain up to 2nh hops of topological pathway information. The dmodel on the horizontal axis represents the linear transformation converting the feature
dimension from 2nh to dmodel. (A) Average AUC value with red–green color mapping, the higher the greener. (B) Average AUPR value with red–blue color
mapping, the higher the bluer.

subspaces, enhancing the expressiveness of the model. And fewer
layers may be able to moderate the overfitting problem caused by
undersampling training.

Comparison with baseline methods
To demonstrate the superiority of LDAformer, we compared it with
the following methods:

• SIMCLDA (2018) [8] is a classic LDA prediction method based
on inductive matrix completion.

• SDLDA (2020) [19] is a hybrid computational framework,
which combines linear and nonlinear features extracted by
singular value decomposition and MLP.

• DMFLDA (2020) [18] is a deep matrix factorization model that
learns nonlinear features through MLP.

• GAMCLDA (2020) [23] is a computational framework based on
graph autoencoder matrix completion. GCN is utilized as the
encoder, and the inner product of embedding is used as the
decoder to reconstruct the association matrix.

• VGAELDA (2021) [24] is an end-to-end model based on vari-
ational inference and graph autoencoder, where variational
graph autoencoders infer node representations, while graph
autoencoders propagate labels.

• LR-GNN (2022) [46] is a GNN based on link representation to
identify potential molecular associations. Here we adopt it for
LDA prediction.

These baselines are based on traditional machine learning and
deep learning algorithms. In particular, GAMCLDA, VGAELDA and
LR-GNN utilized GNNs. We run these methods with their default
parameters, and average ROC and PR curves of 5-fold cross-
validation are shown in Figure 5. Additionally, the significance of
the differences between our method and these baseline methods
in AUC and AUPR values is verified using the two-tailed paired-
sample t-test on both datasets. As shown in Supplementary Data
3, LDAformer performs significantly better than these methods
with P-values less than 0.05.

As a widely used benchmark dataset, more comparisons can
be performed on dataset 1. We further consider seven state-of-
the-art methods: GCNLDA [26], CNNDLP [21], VADLP [29], GCR-
FLDA [28], GAERF [27], GTAN [31] and MGATE [30]. They have
shown promising performance with model structures combining
GNN and other deep learning methods. See Table 1, LDAformer
achieves the highest AUC of 0.994, 1.12% higher than the second-
best GATN. And it performs superior well on AUPR, compared
with other top methods with the level of 0.4–0.5, LDAformer
achieves the highest 0.709, 44.40% higher than the second-highest
GAERF. In the dataset with a positive-to-negative ratio lower than
1:35, such results indicate a very high quality of the predic-
tions.

Still seen in Figure 5, for dataset 2, LDAformer consistently
outperforms the baselines. It achieves the best AUC of 0.941,
which is 1.18% higher than the second-best LR-GNN. And it is still
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Figure 4. Parameter analysis results. On both datasets, comparisons of AUC and AUPR values on the number of heads hhead, the number of layers nl and
the size ratio of hidden units in the feedforward network dff . The selected ones are framed by black lines.

Figure 5. Performance comparison between LDAformer and other baseline methods. (A)–(B) Comparisons of ROC curve, AUC value, PR curve and AUPR
value on dataset 1. (C)–(D) Comparisons of ROC curve, AUC value, PR curve and AUPR value on dataset 2.

outstanding on AUPR, achieving the highest 0.233, which is 9.31%
better than the second-best DMFLDA or SDLDA. On further anal-
ysis, the big difference between the results on the two datasets is
caused by innate differences in the construction of the datasets.
Concretely, an example of a visual analysis we do for dataset 1 is

shown at https://github.com/EchoChou990919/LDAformer/blob/
main/files/vis4dataset1.md. We find that the structure of dataset
1 is probably more consistent with the underlying assumption of
LDA prediction that similar lncRNAs tend to be associated with
similar diseases. Therefore prediction methods generally have

https://github.com/EchoChou990919/LDAformer/blob/main/files/vis4dataset1.md
https://github.com/EchoChou990919/LDAformer/blob/main/files/vis4dataset1.md
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Table 1. Further comparisions on dataset 1

Method Average AUC Average AUPR

GCNLDA (2019) 0.960 0.223
CNNDLP (2019) 0.969 0.286
VADLP (2021) 0.956 0.449
GCRFLDA (2021) 0.959 0.405
GAERF (2021) 0.980 0.491
MGATE (2022) 0.964 0.413
GTAN (2022) 0.983 0.454
LDAformer 0.994 0.709

LDAformer outperforms other state-of-the-art methods.

higher AUC and AUPR values on dataset 1 than on dataset 2.
And focusing on the comparison between methods, LDAformer
is optimal.

Adjustments to the self-attention encoder
The classic structure of the Transformer encoder contains multi-
head attention, residual connection, layer normalization and
feedforward network. In addition to the core multi-head attention,
we perform ablation analysis on the other three parts.

As shown in Table 2, experimental results prove that it is better
to keep the original structure. The removal of residual connection
causes the worst performance drop, because, without residual
connection, the problem of degradation plagues deep networks.
And it is interesting to discuss the role of layer normalization. On
the one hand, layer normalization is conducive to model training
and alleviates the problem of gradient explosion. On the other
hand, the principle of LDA prediction is the multi-hop accessible
pathways between lncRNA–disease pairs. If the lncRNA-disease-
miRNA network is too sparse, layer normalization will damage the
salience of feature embeddings inside the model. So on dataset2,
the offset of these two influences makes the effect of the removal
of layer normalization on the evaluation metrics minimal. And it
is conceivable that in the far more sparse cases, we can even try
to adjust the layer normalization part for better performance.

Ablation study
LDAformer predicts LDAs based on topological feature extraction
and Transformer encoder. It has been experimentally demon-
strated that our topological feature extraction process is effective,
and it is optimal to retain the original structure of the Transformer
encoder. In this section, we conduct further ablation experiments,
replacing the Transformer encoder with more commonly used
deep learning algorithms CNN or MLP. See Figure 6 and Supple-
mentary Data 4, with well-designed structures, our MLP and CNN

ablation models also achieve the ideal performance, comparable
to or even slightly better than the baseline methods utilized the
same algorithms (CNN: CNNDLP, MLP: DMFLDA, SDLDA). Such
results are likely to benefit from our unique topological feature
extraction, which introduces valuable information on multi-hop
topological pathways. But they are still worse than the complete
LDAformer with a Transformer encoder, which proves the irre-
placeable powerful learning ability of the global self-attention,
capturing the interdependency between any two topological path-
ways at the global scale.

Case study
In order to further verify the prediction capability of LDAformer
in practical situations, we conduct case studies on both datasets
separately. We take all known LDAs and equal-sized randomly
selected unknown samples into training, and all unknown
lncRNA–disease pairs for prediction. The prediction results are
available at https://github.com/EchoChou990919/LDAformer and
analyses are as follows.

For dataset1, by collecting experimental evidence in Lnc2Cancer
v3.0 and lncRNADisease v2.0, we find there are 1258 experimen-
tally verified LDAs that were not previously collected. Without
being included in the learning process, 280 of them are still
successfully predicted as associated (LDA score > 0.5), which
fully demonstrates the effectiveness of our method. As seen in
Table 3, we investigate case studies on colon cancer (CC, DOID:
219), osteosarcoma (OS, DOID: 3347) and esophageal squamous
cell carcinoma (ESCC, DOID: 3748).

CC is a type of colorectal cancer located in the colon, most
of which are adenocarcinomas. It stands as a paradigm for our
understanding of the molecular basis of human cancer [47]. Sort-
ing by predicted scores in descending order, 9 of the top 10
candidate lncRNAs are confirmed by literature. For example, XIST
expression level was upregulated in CC tissues and cell lines, and
the growth rate of cells transfected with si-XIST was significantly
decreased compared with that with si-NC, which was reversed by
miR-34a targeted with 3’-UTR [48].

OS is a cancerous tumor in a bone. It is an aggressive malig-
nant neoplasm that arises from primitive transformed cells of
mesenchymal origin and that exhibits osteoblastic differentiation
and produces malignant osteoid [49]. Here 7 of the top 10 candi-
date lncRNAs are confirmed by literature evidence. For example,
increased EWSAT1 expression was associated with poor outcomes
in osteosarcoma patients, and EWSAT1 could serve as a potential
unfavorable prognostic biomarker [50].

ESCC is an esophageal carcinoma that derives from epithelial
squamous cells located in the esophagus. It accounts for about
90% of the 456 000 incident esophageal cancers each year [51]. It is

Table 2. Adjustments to the self-attention encoder

Dataset Add1 Norm2 FF3 Avg AUC Avg AUPR

Dataset1 × � � 0.849 0.189
� × � 0.988 0.589
� � × 0.985 0.615
� � � 0.994 0.709

Dataset2 × � � 0.918 0.130
� × � 0.940 0.231
� � × 0.932 0.212
� � � 0.941 0.233

× or � indicate the removal or retention of corresponding parts. 1Abbreviation for residual connection. 2Abbreviation for layer normalization. 3Abbreviation for
feedforward network.

https://github.com/EchoChou990919/LDAformer
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Figure 6. Replace the Transformer encoder with CNN or MLP. Comparisons of ROC curve, AUC value, PR curve and AUPR value on dataset1.

Table 3. The top 10 CC, OS or ESCC associated candidate lncRNAs

Disease Rank lncRNA Literature Evidence (PMID)

Colon cancer (CC) 1 XIST 29679755*
2 GAS5 28722800*
3 PVT1 30504754*, 29552759*
4 KCNQ1OT1 31040703*
5 TUG1 31697952*, 27634385*
6 NEAT1 32077635*, 31173354*
7 UCA1 30652355*, 26885155*
8 BANCR 28979803+

9 HOTTIP 29274585+

10 NPTN-IT1 Unconfirmed
Osteosarcoma (OS) 1 EWSAT1 29243774*, 27860482*

2 PVT1 32021563*, 31699956*
3 GAS5 30013899*, 31337976*
4 H19 27186302*, 29568924*
5 PCA3 Unconfirmed
6 RMST Unconfirmed
7 DANCR 31918278*, 29753317*
8 MIR155HG Unconfirmed
9 HCP5 30554864*
10 CDKN2B-AS1 31724892*, 31950433*

Esophageal squamous 1 HNF1A-AS1 25608466*
cell carcinoma (ESCC) 2 MALAT1 31938345*, 25613496*

3 MEG3 30990378*, 27778235*
4 UCA1 25550835*, 30002691*
5 BCYRN1 27143917+

6 TINCR 26833746*
7 CCAT2 25919911*, 25677908*
8 HOTTIP 28534516*, 27806322*
9 ZEB1-AS1 31638344*, 26617942*
10 CBR3-AS1 24337686+

*Contained in Lnc2Cancer v3.0 or lncRNADisease v2.0. + Searched by ourselves.

impressive that all of the top 10 candidate lncRNAs are confirmed
by literature evidence. For example, plasma levels of HNF1A-AS1
were significantly higher in ESCC patients compared with normal
controls [52].

For dataset2, all unknown lncRNA–disease pairs are ranked by
predicted LDA score. As shown in Table 4, we investigate the top
15 potential lncRNA–disease pairs and are able to find literature
evidence for 12 of them. It further demonstrates the promising
predictive capability of LDAformer. For example, PVT1 promotes
invasive growth of lung adenocarcinoma cells by targeting miR-
378c to regulate SLC2A1 expression [53]. PVT1/EZH2/LATS2 inter-
actions might serve as targets for lung adenocarcinoma diagnosis

and therapy [54]. Here, the confirmed LDAs are available for the
diagnosis and treatment of diseases, and unconfirmed lncRNA–
disease pairs might be able to guide biological experiments.

Conclusion
Biomedical research has revealed the crucial role of lncR-
NAs in many biological processes involved in diseases. And
computational methods are increasingly proposed to predict
potential LDAs, by which researchers obtain reliable LDAs at
low cost and then contribute to the diagnosis and treatment of
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Table 4. The top 15 potential lncRNA–disease pairs on Dataset2

Rank LncRNA Disease Literature Evidence (PMID)

1 CDKN2B-AS1 stomach cancer 32767927
2 CDKN2B-AS1 lung non-small cell carcinoma 31775885
3 PVT1 lung adenocarcinoma 26908628, 32960438
4 CDKN2B-AS1 lung adenocarcinoma Unconfirmed
5 TUG1 lung cancer 24853421, 28069000
6 XIST lung cancer 27501756
7 CDKN2B-AS1 glioblastoma Unconfirmed
8 PVT1 glioblastoma 34938610
9 DLEU2 colorectal cancer 33391439
10 HCP5 hepatocellular carcinoma 34148029
11 CDKN2B-AS1 renal cell carcinoma 32814766
12 CDKN2B-AS1 thyroid gland papillary carcinoma Unconfirmed
13 CDKN2B-AS1 urinary bladder cancer 33182065
14 CASC15 colorectal cancer 33395735
15 LOXL1-AS1 colorectal cancer 32821123

Literature evidence is searched by ourselves.

diseases. In this work, we proposed LDAformer, an LDA prediction
method based on topological feature extraction and self-
attention mechanism. The associations among lncRNA, disease
and miRNA are integrated from public databases. After the
similarity calculation, to unify semantic information, inter-class
associations and intra-class similarities are concatenated into the
lncRNA-disease-miRNA weighted adjacency matrix. And based on
it, we designed a topological feature extraction process to capture
multi-hop pathway information. Then, we adopt a predictor based
on the self-attention encoder to learn the interdependencies
between pathways globally. Experimental results indicate that
LDAformer performs better than baseline methods, and can
accurately discover potential lncRNA–disease pairs in practical
cases.

However, there are still some limitations. First, the basic prin-
ciple of our method is the assumption that similar diseases tend
to be associated with similar lncRNAs, which leads to neglect of
lncRNAs or diseases with no known associations. Then, compared
with the real world, only a small subset of lncRNAs and diseases
are contained in the datasets, so the trend is to expand the
magnitude of data. Transformer has the disadvantage of being
computationally intensive and may have difficulty adapting to
this trend. In the future, we will consider integrating more aux-
iliary biological associations, introducing more information such
as RNA sequences, and reducing the computational effort.

Key Points

• We integrate heterogeneous lncRNA-disease-miRNA
association data from several latest versions of public
databases.

• A topology feature extraction process is designed that
unifies similarity and association information and rep-
resents multi-hop pathways.

• Based on the powerful Transformer encoder, our method
learns interdependencies between pathways and calcu-
lates the association scores of lncRNA–disease pairs.

• The computational experimental results on benchmark
datasets show that our method outperforms other state-
of-the-art methods, and case studies further demon-
strate the capability to discover potential associations.

Data availability
The datasets and source code are available at https://github.com/
EchoChou990919/LDAformer.
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Supplementary data are available online at https://academic.oup.
com/bib.
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