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Protein-binding RNA Prediction Based on
Integrated Sequence-Structure-Function Pre-training

Lin Gan, Xinyi Wang, Yi Zhou, and Min Zhu

Abstract—RNA binding proteins (RBPs) play a crucial role in
regulating biological functions through their interactions with
specific RNAs, significantly impacting various life processes.
High-throughput experiments provide substantial data, facili-
tating the development of computational predictions. However,
current methods struggle to effectively integrate multi-level se-
mantic information and require enhanced predictive accuracy on
small-sample datasets. To address these limitations, we propose
MTP-RBP, a method that integrates multi-task pre-training with
a robust pre-trained encoder. This method not only extracts
deep contextual information from RNA sequences but also
incorporates structural and functional knowledge for a more
comprehensive semantic representation. By enhancing masked
language modeling with secondary structure construction and
binding function prediction pre-training tasks, MTP-RBP enables
better fusion of multi-level features. Experimental results show
that MTP-RBP achieves state-of-the-art performance, surpassing
baseline and existing RNA language models, particularly on small
datasets. The source code of our proposed MTP-RBP can be
found in https://github.com/TimmyGan/MTP-RBP.

Index Terms—RNA-protein interaction,
transformer-based models, Pre-training.

deep learning,

I. INTRODUCTION

NA binding proteins (RBPs) play a critical role in

various fundamental cellular physiological processes [1],
encompassing gene expression regulation, post-transcriptional
regulation, and protein synthesis [2], [3]. Extensive studies
have demonstrated that the disruption of RNA-protein binding
can lead to severe cellular dysfunction [4], [5], and their
involvement in cancer development and progression has been
well-established [6]. Consequently, exploring the RNA-protein
interaction holds great potential for gaining novel insights into
disease diagnosis and pathogenesis.

In essence, researchers employ high-throughput technolo-
gies to identify Protein-binding RNA. Although these exper-
imental approaches are time-consuming and expensive, they
yield valuable validated data that significantly promote the
development of bioinformatics. In recent years, a multitude
of computational methods have emerged for the prediction
of Protein-binding RNA. It is commonly acknowledged as a
binary classification problem: Each input RNA z is mapped
to a label y € {0,1}, which indicates whether the RNA
contains RBP binding sites. Considering the features employed
to describe the input RNA, current computational methods can
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be classified into two main categories: sequence-based ones
and multi-level-semantics-based ones.

First, sequence-based methods aim to infer from RNA
sequences solely. The prediction of Protein-binding RNA
has traditionally relied on the specific learning paradigm,
where input sequences are typically represented as feature
vectors, and task-specific classification models are trained for
prediction. The main contribution of these methods lies in
the architectures of classification models to effectively extract
critical information from sequences. For example, DeepBind
[7] learned the features of RNA using convolutional neural
network (CNN). DanQ [8] employs one-hot encoding for
RNA and utilizes a CNN-BLSTM architecture to capture
both local features and long-range dependencies in RNA
sequences. DeepCLIP [9] utilizes a hybrid convolution and
BLSTM architecture with WTA-enhancement to improve the
model’s focus on important RNA sequence features. MCNN
[10] employs multiple CNNs to extract RNA vector features
from windows of varying lengths, thereby capturing more
sequence binding patterns of RBPs. WVDL [11] utilizes one-
hot encoded RNA vectors as inputs across three architectures:
CNN, CNN-LSTM, and ResNet. The features extracted from
these architectures are then combined using a weighted voting
method. SA-Net [12] employs the k-mer embedding to repre-
sent RNA sequences into dense vectors, and construct a self-
attention network resembling a Transformer encoder. However,
in the case of learning from a single objective, it’s difficult for
these specific methods to understand the underlying patterns
within RNA sequences. The absence of transferable knowledge
limits the prediction performance, especially in the scarcity of
training data.

In recent years, the pre-training - fine-tuning paradigm has
demonstrated a powerful capability superior to task-specific
prediction methods. Research spots have shifted to pre-training
robust encoders, rather than designing fancy classification
models. Inspired by the remarkable success of BERT [13]
in natural language processing, researchers have developed
pre-trained encoders for biological sequences, thereby ben-
efiting various downstream tasks. For example, DNABERT
[14] captures a global and transferable understanding of
genomic DNA sequences through masked language model-
ing. Then BERT-RBP [15] adapts DNABERT for encoding
RNA sequences, and achieves remarkable performance on
Protein-binding RNA prediction after fine-tuning. RNA-FM
[16] performs self-supervised learning on large-scale RNA
sequences, thereby revealing latent sequential grammar and
evolutionary information. Deservedly, it holds great potential
in the prediction of Protein-binding RNA. Despite the remark-
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able achievements facilitated by advanced language model

techniques, sequence-based methods are inherently insufficient

in understanding RNAs comprehensively. There is still room
for further improvement in the prediction of Protein-binding

RNA by leveraging structural and functional features.

Second, multi-level-semantics-based methods attempt to
make full use of multiple sources of information to model
RNAs. Existing studies primarily remain in the specific learn-
ing paradigm, focusing on constructing specific classification
models with hybrid architectures. iDeepS [17] utilizes two
separate CNNs to learn local features from the encoded
RNA sequence and structure, and then applies BLSTM to
capture the global information for predictions. EDLMFC [18]
integrates both sequence and multi-level structural features,
employing a unified CNN-BLSTM architecture for predic-
tion. HLARPBP [19] uses LSTM to extract the correlation
relationships between different sites in the RNA sequence,
and investigate attention mechanisms in integrating the RNA
secondary structure feature. SNB-PSSM [20] utilizes the struc-
tural window scheme, incorporating evolutionary information
from the spatial neighbors surrounding the target protein
residues. aPRBind [21] extends the sequence and structural
features by integrating dynamic properties, enabling a more
comprehensive feature extraction. MAHyNet [22] employs
hybrid CNN and Gated Recurrent Unit (GRU) networks in
left-right branches to respectively extract features from RNA
sequences and physicochemical properties of RNA bases,
and integrates a multi-head attention mechanism for further
enhancement. In contrast to sequence-based methods, multi-
level-semantics-based methods should hold the potential for
comprehensive RNA understanding and greater performance
in Protein-binding RNA prediction. However, existing methods
are underexploited in addressing the following issues: The spe-
cific models struggle in datasets with fewer samples without
the support of pre-trained encoders, and hybrid architectures
fail to integrate the multi-level semantics of RNAs into unified
representations.

In this study, inspired by the within-task pre-training [23],
we propose a novel method named MTP-RBP, which in-
troduces Multi-Task Pre-training for Protein-binding RNA
prediction. Our pre-trained encoder not only extracts the
underlying patterns within RNA sequences, but also has a
comprehensive understanding of RNAs with explicit structural
and functional knowledge, leading to accurate prediction of
Protein-binding RNA.

The contributions of MTP-RBP can be summarised as
follows:

(1) We leverage multi-level semantics to describe Protein-
binding RNA, including the RNA sequence, RNA sec-
ondary structure, and binding function labels.

(2) We introduce a novel multi-task pre-training framework
to enable the unified learning of multi-level semantics.
Building upon BERT, we augmented the masked language
modeling (MLM) with additional tasks, namely secondary
structure construction (SSC) and binding function predic-
tion (BFP).

(3) After fine-tuning, our model exhibits state-of-the-art per-
formance superior to relevant baselines and existing RNA

language models, especially in datasets with small-scale
samples.

II. MATERIALS AND METHODS

In this section, we first describe the dataset used for MTP-
RBP. Next, we outline the pre-processing methods for RNA
sequences and secondary structures, along with technical de-
tails on implementing MTP-RBP.

A. Dataset

In order to assess the MTP-RBP’s ability to predict RNA-
protein interactions in human CLIP-Seq data, we utilised
the publicly available RBP-24 dataset provided by GraphProt
[24] (http://www.bioinf.uni-freiburg.de/Software/GraphProt/).
The RBP-24 consists of 24 experimental data points for
21 RNA-binding proteins gathered from previous biological
research studies. These RBPs exhibit distinct binding char-
acteristics and biological functions, which may contribute to
variations across the datasets [25]. In each experiment, positive
sites represent subsedquences anchored at the peak center
derived from CLIP-seq processed in doRiNA [26], while nega-
tive sites denote regions lacking supportive evidence of being
binding sites. In addition, the RBP-24 contains independent
test sets. Of all the datasets in the entire experiment, 50%
were positive samples and the remaining 50% were negative
samples. Out of the 24 sub-datasets, 10 have a total sample
size of less than 20,000, indicating a relatively limited amount
of training data. Consequently, comprehending the effective
learning of sequence features from limited data is a crucial
aspect of assessing model performance.

To provide a more comprehensive comparison of model per-
formance, we additionally incorporated an eCLIP-seq dataset
generated by Pan et al. [27] from the ENCODE3 database
[28]. The dataset comprises 154 RBP-specific subsets, each
containing up to 60,000 positive RNA sequences bound to the
corresponding RBPs, along with an equal number of negative
sequences. Each positive sequence spans 101 nucleotides,
with the eCLIP-seq peak positioned at its center, while each
negative sequence is sampled from non-peak regions of the
same reference transcript. Furthermore, we partitioned the
dataset into training, validation, and test sets following the
strategy proposed by Amada et al. [15].

B. Initial Representation

In this work, we incorporate both sequence and structural
feature representations. Specifically, k-mer representation is
employed to represent RNA sequence features, while the Byte-
Pair Encoding (BPE) [29] is used for the structure construction
pre-training task to represent the RNA secondary structure.

1) RNA Sequence

The k-mer representation refers to the extraction of all sub-
sequences of RNA sequences of length k for a better under-
standing of the characteristics and structure of RNA sequences.
k-mer features of the nucleotide composition information of
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RNA sequences take into account the local sequence infor-
mation of RNA sequences, which can characterise the RNA
sequences to a certain extent. Specifically, a window of length
k nucleotides is used to slide over an RNA sequence in a
certain step size, and the subsequence within each window is
recorded, which is called k-mer.

Since each position in a k-mer can be a total of four nu-
cleotide types: A, U, G, or C, RNA sequences can generate 4k.
dimensional space. Moreover, considering the filler position N,
we treats all subsequences containing N as the same additional
type, resulting in a total of 4% + 1 unique k-mer subsequence
types. For an RNA sequence s = (s1, S2, S3, ..., Si—1, 1), We
employ a sliding window of length k& with a step size of 1,
resulting in [ — k + 1 subsequences. Each subsequence is then
converted into a one-hot vector with a dimension of 4% + 1.
Furthermore, the matrix representation of the whole sequence
can be obtained by splicing in order, which has the dimension
[l —k+1, 4% +1].

As the value of k in k-mer increases, the size of the
subsequence space grows exponentially, and in order to take
into account the computational performance, the length of k-
mer generally does not exceed 6 [12]. Here, we set the k-value
size to 4, which proved to be optimal in subsequent validations.

2) RNA Structure

RNA secondary structures are used to represent the interaction
relationships between contextual bases. In this work, we first
predict the RNA secondary structure and then encode the
predictions.

For RNA secondary structure prediction, RNAfold [30]
was used over other advanced methods such as FocusFold
[31], CONTRAFold [32], and LinearFold [33], based on the
recommendations by Binet et al. [34]. The predicted structure
is represented in a dot-bracket format, where each symbol
corresponds to a base in the sequence. Following the principle
of base complementary pairing, a secondary structure pairing
tree diagram is generated. This diagram is categorized into
annotations such as stacking (S), free end (F), joint (J), hairpin
(H), internal loop, and multi-loop (M).

For RNA secondary structure encoding, we adapt BPE to
model the intricate folding patterns of RNA molecules. Its
main principle is to merge frequent adjacent byte pairs in
the text to construct a more concise vocabulary. Initially,
The vocabulary consists of each RNA secondary structure
annotation as a separate morpheme. Next, the algorithm it-
eratively performs the following operations: first, it counts the
frequencies of all adjacent byte pairs; then, it identifies the
most frequent byte pair and merges it into a new morpheme;
finally, it updates the vocabulary to include this newly merged
morpheme. This process repeats until reaching a specified
vocabulary size or maximum number of iterations.The merge
operation can be described using the following formula:

V' =V Uab (1)

where V' is the current vocabulary, ab is the most frequent
adjacent byte pair to be merged, and V' is the updated
vocabulary after merging.

After multiple merges, the final vocabulary is generated.
In this work, we first divide the structural sequence into
consecutive subsequences of length k, and then use BPE to
represent the RNA secondary structures. In particular, we
set the size of the final vocabulary table to 95, which is
able to significantly reduce the memory consumption and
computational requirements of the model compared to using
4-mer encoded 5% dimensions.

C. Model Architectures

The MTP-RBP is divided into two stages: the pre-training
stage and the fine-tuning stage, both of which are formed with
the Transformer-Encoder architecture [35] as the core. The
upstream pre-training performs masked language modeling,
binding function prediction and secondary structure construc-
tion tasks to represent the functional semantic and structural
information of RNA sequences in different contexts; the down-
stream fine-tuning performs binding function prediction task.
The MTP-RBP architecture is shown in Fig.1.

1) Transformer-based Encoding Module

The Transformer-based encoding module consists three key
components: the embedding layer, positional encoding, and
multi-head attention.

In the embedding layer, for the input RNA matrix I €
R'%dorig. we use the word embedding dimensionality reduc-
tion vector and set the post-embedding dimension to d,oqde-
Multiplying the input matrix [ with the embedding matrix
M € Rdorig-Xdmodet - we obtain the k-mer embedding output
matrix O € R!Xdmodel which is calculated as.

0= V dmodelIM (2)

The introduction of the constant scaling factor v/d,,oqe; 18
significant as it appropriately enlarges the embedded values to
mitigate their numerical impact on subsequent inputs, espe-
cially when combined with the positional encoding overlay.

At the stage of positional encoding, sinusoidal and cosinu-
soidal functions at varying frequencies are employed to assign
distinct codes to individual positions within the sequence,
enabling the model to differentiate between information at
different positions. These formulas are computed as follows:

PE(pos,2i) = sin (pos/ 100002/ ol ) 3)

PE(pos,2i+1) = cos (pos /100002 dmoce ) (4)

where pos € (0, 499) denotes the position of the subse-
quence in the whole sequence of k-mer words, and i €
(0, dimodet/2 — 1) denotes the individual dimensions in which
the position of the subsequence is encoded. Subsequently, con-
catenate the positional encoding vectors in sequence to obtain
the positional encoding matrix P. Then, apply a dropout
function to the sum of the output matrix O and the positional
encoding matrix P.

P =[PEy, PEy,...,PE,_{]" (5)
T
PE, = [PE ), PE@,), .-, PEq.4 ] (6)

model —1)
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Fig. 1. The network framework flowchart of MTP-RBP. The model comprises Feature Representation, Transformer-Encoder Block, and three task modules,
namely Mask Language Modeling, Binding Function Prediction, and Secondary Structure Construction. First, the RNA sequences are encoded by k-mer
representation, and BPE was performed on the RNA secondary structure. Subsequently, the Transformer-Encoder is pre-trained in accordance with the three
aforementioned task modules, thereby enabling the model to obtain a more comprehensive sequence-structure-function feature representation. Finally, the
fine-tuned stage shares some of the parameters corresponding to the pre-trained stage for initialization and performs the Binding Function Prediction task to

predict whether the RNA sequence can bind to the protein.

X = dropout (P + O) (7

where the matrix X € R!*9modct represents the input sequence
matrix after adding the position encoding, and the dropout
function takes pgyop as the random inactivation probability.
At the multi-head attention section, it consists of N identical
Transformer-Encoder layers, where the output of each layer
will be used as input to the next layer. Each layer con-
tains multi-head attention sublayer and position feed forward
network sublayer. After completing the computations in the
sublayers, a dropout function is applied to the output, and
residual connections with layer normalization are employed.

®)

where Sublayer () denotes the function implemented by the
sublayer. To simplify the residual linkage computation, each
sublayer generates outputs of dimension d,,odei-

The multi-head attention allows the Transformer-Encoder
to focus on the information from different subspaces, which
helps our model to learn more RNA sequence features. In
RNA sequences, padding positions do not carry meaningful
information and should not be assigned attention weights.
Therefore, padding positions should be masked, meaning the
attention weights are set to 0 during computation, ensuring that
the model does not attend to the padded parts of the sequence.

H (x) = Layer Norm (x + dropout (Sublayer (x)))

MultiH (Q, K, V) = Concat (head,, ..., heady,) W (9)

head; = Attention (X Wig , XWZ-K, XWl-i ) (10)
tenti (~ ~ ~) ' QNK (11
Attention | Q, K, V') = softmax V
T Vg

where W is a linear propagation parameter and dj denotes the
output dimension of each head computed by attention, which
is set to dioger/h; h denotes the number of heads with multi-
head attention.

The position feed-forward network sublayer consists of two
linear transformations with a G E LU activation function in the
middle.

FFN (z) = GELU (zWy + b)) Wa+ by (12)

GELU(z) =x - p(x) (13)

where W, € RimederXdss and Wy € R *%moder are the
transformation parameters, dy; denotes the dimensionality
after the first linear transformation, b; and b, denote the bias
terms added in the two linear changes, respectively. o(z)
represents the cumulative distribution function (CDF) of the
standard normal distribution, which is given by:

)

X

NG (14)

1
o(z) = 5 [1 +erf<
where erf(x) is the error function.

2) Classification Modules

Classification modules correspond to the learning of sequence-
structure-function multiple semantics features, respectively,
where sequence and structure features use liner multi-class
classifier, and functional features use BiGRU-based binary
classifier.

a) Liner Multi-class Classifier for Sequence

The liner multi-class classifier for sequence primarily predicts
the k-mer subsequences of RNA that are masked. It takes
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the output matrix A € R!*dmodet from the Transformer-
Encoder, and selects the masked input sequence positions in
the matrix to form the output vector for the multi-classifier
input matrix B € R!m*dmedei The input matrix B is linearly
transformed once in equal dimensions with GELU as the
activation function, normalized by one layer, and then linearly
transformed again with softmax as the activation function,
and projected to the dictionary dimension to predict the k-mer
subsequences masked by the [MASK] token.

C =GELU (BWg +bp) (15)
P = softmax (Layer Norm(C)W¢ + be) (16)
where the linear variation matrix parameters Wp €

RmodetXdmoact and W € R9meaet*258 are randomly ini-
tialized and subsequently optimized by the back-propagation
algorithm of the model, and bp and bc denote the bias terms
added to the two linear variations, respectively.

b) Liner Multi-class Classifier for Structure

Unlike the multi-class classifier for sequence, which predicts
masked sequences, the multi-classifier for structure is used
to predict the entire secondary structure of RNA. It receives
the output matrix A € R!X9medet from the Transformer
encoder. Initially, matrix A undergoes a fully connected layer
operation with the GELU activation function, followed by
layer normalization. Subsequently, another fully connected
layer operation is performed using the softmax function,
projecting the results into the BPE encoding dimension to
predict RNA secondary structure fragments.

B =GELU (AW4 +ba)
P = softmax (Layer Norm(B)Wpg + bp)

7)
(18)

where W is the linear variation matrix parameter; b4 and bp
denote the bias terms in the two linear variations, respectively.

¢) BiGRU-based binary Classifier for Function

The binary classifier is used to determine whether RNA has
binding functionality. It further captures long-term depen-
dencies and contextual information in the sequence data by
adding a BiGRU layer to receive the output matrix A of
the Transformer-Encoder, and a binary classifier is then used
to classify whether the masked sequence has binding site
semantics.

The GRU consists of two gating units, reset gate r; and
update gate z;. It computes the output h; of the current hidden
node by combining the current input z; and the contained
hidden state h;_; inherited from the previous node.

19)
(20)

ry =0 (wy - [hi—1, %))
2zt = o (wy - [he—1,x¢])

where w, and w, are the weights of the reset and update gates.
o is the logistic sigmoid function. Afterwards, the reset data
fzt_l spliced with z; is obtained using the reset gate r; and
scaled by a tanh activation function.

h; = tanh (wﬁ~ [ hi_v, x D 2D

},Ltfl =hy_1-1¢ (22)

where h; denotes the candidate memory content. Finally, the
GRU calculates the final hidden state h; as output.

ht = Zt - iLt —+ (1 — Zt) . htfl (23)

Further, BiGRU takes into account reverse RNA sequences
by combining forward GRUs with reverse GRUs, allowing
the model to learn more contextual information and improve
classification accuracy.

Subsequently, the output of BiGRU is sent to a binary
classifier. The biclassifier does an equal dimensional linear
transformation of the output with a tanh activation function.
After spreading, the probability p is calculated using a linear
transformation with a sigmoid activation function.

D. Details in Pre-training and Fine-tuning

Corresponding to the three semantic information categories
of sequence, structure, and function, we have established the
following three pre-training tasks:

Task 1: Masked Language Modeling (MLM): The MLM
aims to learn the sequence semantic features of RNA from
the word level. K-mer subsequences are in different contexts
and the corresponding functional semantics are somewhat
different, the model predicts the masked word by the context
to learn the functional semantics of the word in each context.
First, 15% of the k-mer subsequences are selected to be
replaced with [MASK] tokens, and to increase the difficulty of
prediction, we mask the consecutive k subsequences at a time.
Second, the model predicts the corresponding subsequence
of [MASK] to train the model parameters according to the
context. The sparse categorical cross-entropy loss function is
employed for the MLM task, ensuring the model effectively
captures and learns these nuanced semantic features.

| M
Lyrm = i Zlogpi,yi
i=1

Task 2: Binding Function Prediction (BFP): The BFP aims
to determine whether an RNA contains binding site functional
semantics from the sentence level. In this context, a ’sentence”
in natural language is analogous to the entire RNA sequence.
This task involves adding a BiGRU-based binary classifier that
receives semantic embedding matrices to classify whether the
masked sequence possesses binding site semantics. Sequences
classified as 0 do not have binding site semantics and do not
interact; sequences classified as 1 have binding site semantics
and interact with RNA-binding proteins. The mean square
error loss function is used for the BFP task, ensuring precise
classification by minimizing the error between predicted and
actual classifications.

(24)

1M
_ 52
Lprp =37 Z;(yl i) (25)
Task 3: Secondary Structure Construction (SSC): The SSC
aims to extract RNA features from the structural hierarchy.
The encoder is capable of containing partial RNA structural
information following the completion of the MLLM pre-training
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task [16]. However, training only word-level and sentence-
level tasks during the pre-training stage is insufficient for fully
representing structural features. Therefore, in order to further
highlight the informative representation of RNA secondary
structure, we set the task of constructing the whole secondary
structure. By mapping predicted structures to the en coding
dimensions of BPE, the model comprehensively captures the
features of RNA structures. The sparse categorical cross-
entropy loss function is employed for the SSC task, ensuring
accurate and robust representation of the RNA secondary

structure.
M

1
Lssc=—4; > logpiy,
i=1

(26)

In the pre-training phase, the training data adopted for the
MLM task and the SSC task are all positive samples in the
training set, which are used to model the semantic information
of RNA from sequences and structural hierarchy. The training
data used for the BFP task is the entire training set, which is
used to learn sequences with semantic information of binding
sites from the functional hierarchy.

During pre-training, we employ a step-by-step pre-training
approach. First, we execute the MLM task and the BFP
task to extract the RNA sequence context and functional
information. After that, all three pre-training tasks are executed
simultaneously, which enables the pre-trained encoder to char-
acterize the comprehensive features at the three levels of RNA
sequence-structure-function. The overall loss function in the
pre-training is the sum of the loss functions of the three tasks.
The maximum number of iterations of pre-training epoch is
set to 50. we use the early stop method to stop the model
training early when the loss of the model no longer continues
to decline, and save parameters to the checkpoint.

In the fine-tuning phase, the fine-tuned model is initialized
by sharing some of the parameters corresponding to the pre-
trained model. The model is fine-tuned using the mean square
error loss function on each of the sub-datasets, and the fine-
tuning process employs mini-batch gradient descent with a
batch size of 128 and the Adam optimization function with
a learning rate set to 0.001. The details of hyperparameter
settings are shown in Table L.

TABLE I
HYPER -PARAMETER S ETTINGS OF MTP-RBP

Hyper-parameters Setting
k-mer embedding encoding k& 4
k-mer embedding dimension d,,,ode; 16
Transformer-Encoder stacking number N 6
Number of heads in the multi-head attention sublayer A 2
dropout function’s dropout rate pgrop 0.1

III. RESULT

To evaluate the performance of MTP-RBP, we conducted a
series of experiments on the RBP-24 and ENCODE datasets.
First, we compared the performance of MTP-RBP with six
other methods. Next, we performed ablation studies on the
representation strategy, model pre-training strategy, and model

encoding architecture. Finally, we evaluated the performance
of the functional prediction module during the fine-tuning
classification stage and analyzed the performance of BiGRU
in comparison to the widely used BLSTM and CNN-BLSTM.

A. Evaluation Metrics

Consistent with the previous evaluation metrics for the
Protein-binding RNA prediction problem, we use the area
under the ROC curve (AUC) as an evaluation metric to
assess the performance of MTP-RBP. Additionally, we employ
average precision score (AP), Recall, and Matthews Corre-
lation Coefficient (MCC) to provide a more comprehensive
performance evaluation. AUC is computed based on True
Positive Rate (TPR) and False Positive Rate (FPR), while AP
is calculated from Precision and Recall. The definitions of
these metrics are as follows:

Precision = 7TPJ;—PFP 27

Recall = 70— PTf - (28)
FP

TPR= 5pTN (29)
TP

FPR=5p TN 0

MCC — TP xTN —-FP x FN

/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

(€29)
where TP, TN, FP and FN represent the number of true-
positive, true-negative, false-positive and false-negative sam-
ples, respectively. AUC denotes the area enclosed by the ROC
curve with the axes using TPR and FPR as the vertical and
horizontal axes. AP denotes the area enclosed by the Precision-
Recall curve with the axes.

B. Comparison With Advanced Methods

In this section, we first compare MTP-RBP with the leading
methods. Next, we compare our approach with RNA pre-
trained language model encoding methods.

1) Methods Specific to Protein-binding RNA Prediction

To demonstrate the exceptional performance of our proposed
MTP-RBP model, we conduct a comparative study on the
RBP-24 and ENCODE datasets against five typical and state-
of-the-art methods: iDeepV [36], iDeepS [17], DeepCLIP [9],
SA-Net [12], and WVDL [11]. Below is a brief description of
each baseline model.

o iDeepV: Using RNA sequences as input, k-mer embed-
dings learned through the Word2Vec algorithm as feature
representations, and CNNs are utilized for classification.

o iDeepS: Using RNA sequences and RNA secondary
structures as inputs, one-hot encoding as feature represen-
tation, and CNN-BLSTM architecture for classification.

o DeepCLIP: Using RNA sequences as input, one-hot en-
coding as feature representation, and a WTA-enhanced
CNN-BLSTM architecture for classification.
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Fig. 2. The AUC of MTP-RBP and other models across ENCODE’s 154 RBP datasets. Each dot represents the AUC of MTP-RBP and the corresponding
baseline model trained using the same RBP dataset. The dots above the dotted line indicate that the MTP-RBP model performs better than the other models.

e SA-Net: Using RNA sequences as input, k-mer encoding
as feature representation, and using Self-attention based
neural network for classification.

« WVDL: Using RNA sequences as input, one-hot encod-
ing as feature representation, and using Weighted Voting
method to combine multiscale CNN-LSTM and ResNet
for classification.

TABLE II
THE PERFORMANCE OF METHODS ACROSS RBP-24 AND ENCODE

Dataset Model AUC AP Recall MCC
iDeepV 0913 0907 0863 0684

iDeepS 0933 0935 0864 0756

DeepCLIP 0935 0931 0870  0.743

RBP-24 SA-Net 0945 0945 0893  0.767
WVDL 0952 0951 0908 0801

MTP-RBP 0961 0961 0908 0816

iDeepV 0746 0737 0688 0361

iDeepS 0773 0765 0705 0404

DeepCLIP 0688  0.675 0639 0272

ENCODE SA-Net 0764 0755 0697 0391
WVDL 0774 0764 0708 0411

MTP-RBP 0790  0.782 0730  0.434

Bold: best results.

Table II presents a performance comparison of our model
with existing methods across RBP-24 and ENCODE datasets.
Our model consistently outperforms the baselines, achieving

the best overall results across all four metrics on both datasets.
Specifically, on RBP-24, MTP-RBP attained the highest AUC
(0.961), exceeding iDeepV, iDeepS, DeepCLIP, SA-Net, and
WVDL by 4.8%, 2.8%, 2.6%, 1.6%, and 0.9%, respectively.
Similarly, on the ENCODE dataset, MTP-RBP achieved the
highest AUC (0.790), surpassing iDeepV, iDeepS, DeepCLIP,
SA-Net, and WVDL by 4.4%, 1.7%, 10.2%, 2.6%, and 1.6%,
respectively. Fig.2 further illustrates that in a one-to-one
comparison with each baseline, our model obtained the highest
scores in 141 out of 154 RBPs in the ENCODE dataset.
Likewise, as shown in Table III, our model outperformed all
baselines in 21 out of 24 RBPs in the RBP-24 dataset. These
results demonstrate that MTP-RBP consistently maintains su-
perior predictive performance across different datasets, further
confirming its robustness and generalizability.

It is worth emphasizing that on the RBP-24 dataset, our
model demonstrates significant performance improvements,
particularly on sub-datasets with fewer training samples. For
example, on the ALKBHS sub-dataset with 2,410 samples
and the C170RF85 sub-dataset with 3,709 samples, MTP-
RBP achieves AUC values of 0.842 and 0.938, respectively,
surpassing the best results of other models by 5.8% and
3.6%. This indicates that our model, trained with a specific
pre-training task, effectively captures deep contextual repre-
sentations of RNA sequences, exhibits strong generalization
ability, and achieves excellent performance even with limited
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TABLE III
THE AUC PERFORMANCE OF MTP-RBP AND OTHER METHODS
ACROSS RBP-24

RBP iDeepV iDeepS DeepCLIP SA-Net WVDL MTP-RBP
ALKBH5 0.643 0.773 0.716 0.788  0.784 0.842
CI70RF85 0.740  0.865 0.898 0902  0.886 0.938
C220RF28 0.823  0.842 0.838 0.869 0.874 0.899
CAPRIN1  0.824  0.961 0.948 0919 0948 0.950

Ago2 0.886  0.834 0.859 0.898  0.899 0.911
ELAVL1(H) 0.966 0.979 0.981 0.983  0.980 0.983

SFRS1 0.905 0.952 0.955 0.960  0.963 0.973
HNRNPC 0979 0978 0.983 0981 0.983 0.985

TDP43 0935 0914 0.905 0946 0954 0.968

TIA1 0941  0.941 0.945 0952 0954 0.965

TIAL1 0.929 0.938 0.943 0938  0.948 0.959

Agol-4 0925 0915 0.918 0.933  0.940 0.950
ELAVLI(B) 0962 0.978 0.982 0.982  0.984 0.984
ELAVL1(A) 0973 0974 0.982 0977 0975 0.984
EWSRI1 0962  0.972 0.974 0971  0.981 0.986

FUS 0976  0.983 0.986 0.984  0.991 0.993
ELAVLI(C) 0.990 0.997 0.995 0992 0993 0.994
IGF2BP1-3 0923  0.906 0.898 0.966  0.970 0.975
MOV10 0.896  0.931 0.940 0940 0.958 0.953

PUM2 0.965 0.975 0.969 0970 0.972 0.986

QKI 0.965  0.958 0.975 0973 0974 0.988

TAF15 0978 0.975 0.982 0976  0.982 0.989

PTB 0.936  0.930 0.927 0.957  0.950 0.958
ZC3H7B 0.883  0.929 0.933 0928 0953 0.954
Average 0913  0.933 0.935 0945  0.952 0.961

Bold: best results.

training data. Meanwhile, SA-Net performs better than other
methods on these two sub-datasets due to its use of the
attention mechanism. Although both SA-Net and MTP-RBP
utilize RNA sequences as inputs, the integrated pre-training
strategy in MTP-RBP enables the model to incorporate com-
prehensive sequence-structure-function information, thereby
enhancing prediction accuracy.

2) Methods Based on RNA Language Models

To assess the broad applicability of MTP-RBP in RNA-protein
interactions, we compared it with the pre-trained language
model encoding method RNA-FM. RNA-FM utilizes only
MLM as its pre-training task. In contrast, MTP-RBP incor-
porates additional pre-training tasks at both structural and
functional levels.

TABLE IV
COMPARISON OF ENCODING PERFORMANCE BETWEEN MTP-RBP
AND RNA-FM ACROSS RBP-24 AND ENCODE

Dataset Model AUC AP Recall MCC
RBP4 RNA-FM 0938 0938 0878 0762
MTP-RBP 0961 0961 0908  0.816

RNA-EM 0752 0745 0764 0352

ENCODE  yvitpRBP 0790 0782 0730  0.434

Bold: best results.

Table IV presents the four evaluation metrics of the two
deep encoding methods across RBP-24 and ENCODE datasets.
MTP-RBP consistently outperforms RNA-FM across both
datasets in terms of AUC, AP, and MCC. Specifically, on
the RBP-24 dataset, MTP-RBP achieves an AUC of 0.961,

surpassing RNA-FM by 2.3%, while also demonstrating higher
AP and MCC. Furthermore, MTP-RBP attains a recall of
0.908, indicating a higher sensitivity in identifying true bind-
ing sites. Similarly, on the ENCODE dataset, MTP-RBP
achieves an AUC of 0.790, outperforming RNA-FM by 3.8%.
It also exhibits higher AP and MCC, further confirming its
robustness in RNA-protein interaction prediction. While RNA-
FM achieves a slightly higher recall , this comes at the cost
of lower precision, as reflected by the lower MCC score.
These results suggest that the incorporation of additional pre-
training tasks at both structural and functional levels in MTP-
RBP enhances its feature representation capabilities, leading
to superior predictive performance compared to RNA-FM.

MTP-RBP

0.5 0.6 0.7 0.8 0.9
RNA-FM

Fig. 3. The AUC of MTP-RBP and RNA-FM over ENCODE’s 154 RBP
datasets. The dots above the dotted line indicate that the MTP-RBP performs
better than the RNA-FM.

Fig. 3 shows that in a one-to-one comparison with RNA-
FM, our model achieves the highest scores across all 154 RBPs
in the ENCODE dataset. Similarly, Table V presents the AUC
and AP of the two deep encoding methods on the RBP-24
dataset. MTP-RBP obtained the highest AUC in 22 out of 24
RBPs and the highest AP in 20 out of 24 RBPs, demonstrating
that our BFP and SSC pre-training tasks effectively capture
the structural and functional features of RNAs, providing a
more comprehensive representation of the sequence code. In
the sub-datasets with the smallest sample sizes, ALKBH5
and C170RF85, MTP-RBP outperforms RNA-FM by 5.2%
and 3.7%, respectively. These results highlight the strong
applicability of our pre-training and encoding methods for
small datasets.

C. Ablation Experiments

To assess the efficacy of individual modules within MTP-
RBP, in this section, we conduct ablation experiments across
three dimensions: pre-training strategies, representation strate-
gies, and model architectures.
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TABLE V
COMPARISON OF ENCODING PERFORMANCE ON RBP-24

RBP RNA-FM MTP-RBP
AUC AP AUC AP

ALKBHS 0.790 0.791 0.842 0.852
C170RF85 0.901 0.898 0.938 0.938
C220RF28 0.870 0.875 0.899 0.886
CAPRIN1 0.951 0.944 0.950 0.954
Ago2 0.850 0.854 0.911 0.915
ELAVLI(H) 0.984 0.985 0.983 0.984
SFRS1 0.957 0.954 0.973 0.973
HNRNPC 0.984 0.981 0.985 0.978
TDP43 0.922 0.930 0.968 0.969
TIA1 0.949 0.946 0.965 0.968
TIALI 0.936 0.933 0.959 0.959
Agol-4 0.925 0.926 0.950 0.950
ELAVLI1(B) 0.983 0.985 0.984 0.984
ELAVLI(A) 0.973 0.966 0.984 0.982
EWSRI1 0.975 0.975 0.986 0.986
FUS 0.986 0.988 0.993 0.994
ELAVLI(C) 0.994 0.995 0.994 0.993
IGF2BP1-3 0.889 0.889 0.975 0.975
MOV10 0.940 0.938 0.953 0.958
PUM2 0.964 0.972 0.986 0.988
QKI 0.968 0.975 0.988 0.990
TAF15 0.976 0.972 0.989 0.991
PTB 0.930 0.923 0.958 0.959
ZC3H7B 0.927 0.911 0.954 0.949
Average 0.939 0.938 0.961 0.961

Bold: best results.

1) Pre-training Strategies

To confirm that MTP-RBP achieves the best encoding per-
formance for RNA sequences when all three pre-training
tasks are executed, we conducted pre-training strategy ablation
experiments as follows: Maintaining consistency in the MTP-
RBP model architecture and hyper-parameter settings, we
categorized it into four models:

o Modelnone: Without pre-training.

o Modelyypm: Pre-trained only with the MLM task.

e Modelyg: Pre-trained with MLM and BFP tasks.

o Modelgye: Extends Modely mprp by incorporating RNA
secondary structure as additional input. This model con-
catenates encoded sequences with structural embedding
features for input into the subsequent prediction module.

Fig.4 shows the AUC on RBP-24 for models with differ-
ent pre-training strategies. Compared to the model without
pre-training, the performance of the model pre-trained only
with the MLM task exhibited some improvement, but was
significantly lower than the model pre-trained with both strate-
gies. The experimental results illustrate that the model pre-
trained only with MLM learns the semantic information of
k-mer subsequences at the sequence level. In contrast, the
model pre-trained with both strategies incorporates binding
site semantic information at the function level, enhancing its
ability to capture deeper contextual aspects of RNA sequences.
MTP-RBP achieves optimal performance when employing all
three pre-training tasks simultaneously. This approach effec-
tively models the contextual representation of sequences while
seamlessly integrating RNA structural information. Moreover,
MTP-RBP exhibits a significant advantage over Modelgqyct,

which directly incorporates structural features as inputs, indi-
cating that concurrently performing multiple pre-training tasks
facilitates the fusion of sequence-structure-function features.
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Fig. 4. AUC values of MTP-RBP under different pre-training strategies and
with structural features as another branch inputs.

2) Representation Strategies

To validate the enhanced efficacy of our BPE-inclusive K-
mer Semantic Representation strategy, we conducted a com-
parative analysis with k-mer embedding encoding (Modelemp)
and k-mer semantic encoding (Models.,). The key distinc-
tion between these methods and MTP-RBP lies in the fact
that Modele,, does not engage in pre-training tasks, while
Modelg.,, does not utilize BPE during RNA structural rep-
resentation. Instead of utilizing the dimensionality of BPE,
Modelg., predicts dimensions for structural construction tasks
at kS.

—o— Modelemp
Modelsem
MTP-RBP

0.960
0.955
0.950
0.945
0.940
0.935
0.930

0.925

1-mer 2-mer 3-mer 4-mer 5-mer 6-mer

Fig. 5. The AUC of three representation strategies for various k-mer lengths.

From Fig.5, it can be seen that BPE-inclusive K-mer Se-
mantic Representation strategy has the highest performance.
In this case, regardless of the value of k, the AUC values of the
k-mer embedding encoding-only method are lower than those
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of the method with pre-training. At k values of 4 and 6, MTP-
RBP outperforms Modele,, by 1.8% and 2.4% respectively,
owing to MTP-RBP’s execution of three pretraining tasks to
learn deep representations of RNA sequences. This highlights
the importance of enhancing encoding through pretraining. For
Modelgp, it can be observed that when the value of k ranges
from 1 to 3, it achieves performance comparable to MTP-RBP,
and even slightly outperforms MTP-RBP when k equals 2.
This phenomenon arises from the fact that when k is small, the
prediction space dimensionality of RNA secondary structures
is similarly reduced, rendering BPE unable to effectively
capture these patterns and thus failing to fully leverage its
advantages. When k exceeds 4, the AUC values of MTP-
RBP consistently surpass those of Modelgp,. This observation
suggests that BPE is more adept at capturing the internal
structure of the vocabulary and reducing the sparsity of the
data when there is a large variety of subsequences, thereby
favoring the model’s performance in structural construction
pre-training tasks. In summary, our proposed BPE-inclusive
K-mer Semantic Representation strategy ensures the represen-
tation quality of RNA sequences by selecting appropriate k-
values as well as effective encoding methods.

~&— Modelppp
0.960 MTP-RBP
0.955
O
S 0.950
<
0.945
0.940
1-mer 2-mer 3-mer 4-mer 5-mer 6-mer
Fig. 6. AUC values of two structural representations across various k-

mer lengths. Modely,,, represents RNA secondary structures using base-
pair probability matrices, while MTP-RBP employs motif annotations for
secondary structure representation.

Furthermore, we explored the impact of two different
RNA secondary structure representations—motif annotation
and base-pair probability matrices—on model performance
[37]. The performance of these two representations was com-
pared across different k-mer lengths, as shown in Fig.6. When
the k-mer length is less than 3, the model tends to perform
better with base-pair probability matrices. This suggests that
for shorter k-mers, the global pairing information provided
by base-pair probability matrices can effectively compensate
for the limitations of motif annotation in extracting struc-
tural features within short sequences. As the k-mer length
increases, k-mers provide richer contextual information, al-
lowing the model to better capture local structural patterns,
which enhances motif annotation and improves downstream

10

performance. When k£ = 4, the balance between local and
global information reaches an optimal point, resulting in the
highest overall model performance.

3) Model Architectures

To validate the efficacy of the model architecture, we con-
ducted separate ablation experiments on the encoding stage
architecture and the classification stage architecture.

a) Encoding Module

MTP-RBP modifies the base BERT architecture to suit RNA-
protein interaction tasks. Specifically, MTP-RBP replaces the
learnable position encoding with fixed position encoding to
reduce the overall number of model parameters. Additionally,
it omits the [CLS] token and instead employs all output vectors
for classification in downstream tasks. To assess the efficacy
of the model architecture modifications, we conducted an
experiment with the following setup: We sequentially adjusted
the MTP-RBP model architecture to include the [CLS] token
(Modelcrs), employ learnable positional coding (Modelpgs),
and incorporate both the [CLS] token and learnable positional
COdng (MOde]C]_spos).

Fig.7 illustrates the AUC scores achieved by MTP-RBP
models utilizing various architectures on RBP-24. The MTP-
RBP model demonstrates the highest performance, followed
by the model with learnable position encoding, whereas the
remaining two models that introduce [CLS] token exhibit poor
performance. RNA sequences are longer than natural language
sequences, and it is difficult to characterize key features of
longer sequences using only a single output vector corre-
sponding to a [CLS] token. In summary, two enhancements of
the MTP-RBP model over the basic BERT architecture prove
effective.
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Fig. 7. The AUC values of the MTP-RBP models with different architectures
on RBP-24.

b) Classification Module

The purpose of this section is to evaluate the plausibility of
the binding function prediction module, which integrates a
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BiGRU layer to the binary classifier to further capture long-
range dependencies in sequences. As shown in Fig.8, Based on
the MTP-RBP model, we construct two Variants by removing
the BiGRU layer (Model;), and replacing the BiGRU with a
unidirectional GRU layer (Models), respectively. Additionally,
we assess the performance of the frequently used BLSTM
(Modelg) and CNN-BLSTM (Modely).

Linear
f f |
Linear Linear BLSTM
Linear GRU BLSTM CNN
Output Output Output Output
Embedding Embedding Embedding Embedding

(a) (b) (c) (d)

Fig. 8. Comparison models utilizing different modules in the classification
phase.

TABLE VI
PERFORMANCE COMPARISON OF USING DIFFERENT MODULES IN THE
CLASSIFICATION STAGE

Model AUC AP Recall MCC
Modely 0.955 0.954 0.902 0.810
Models 0.957 0.957 0.904 0.813
Models 0.958 0.957 0.911 0.812
Modely 0.957 0.956 0.902 0.810
MTP-RBP 0.961 0.961 0.908 0.816

Bold: best results.

Table VI demonstrates that MTP-RBP outperforms the other
four models in terms of AUC, AP, and MCC. Model; exhibits
the lowest values across all four metrics when using only the
binary classifier, compared to the models combined with GRU
and LSTM. This suggests that GRU and LSTM are effec-
tive in further handling long-term dependencies, enabling the
model to better memorize and utilize the encoded information.
Additionally, comparing MTP-RBP and Model, shows that
using BiGRU in the model achieves better performance than
using GRU alone, as GRU only considers forward information
in the RNA sequence, failing to capture the complex struc-
ture adequately. In contrast, BIGRU considers both forward
and backward information, providing a more comprehensive
sequence representation. Furthermore, although both MTP-
RBP and Model; can capture long-term dependencies, GRU’s
gating mechanism may be more effective in balancing remem-
bering and forgetting in some cases, particularly when dealing
with long RNA sequences. Finally, comparing Model; and
Modely, we find that although the CNN-BLSTM architecture

is effective in Protein-binding RNA prediction, using CNNs
after high-quality encoding may cause a loss of information
transfer, hindering the BLSTM’s ability to capture essential
features. In conclusion, our proposed feature prediction mod-
ule for BiGRU-binary classifiers is effective.

IV. CONCLUSION

In this study, we propose a pre-training - fine-tuning model
called MTP-RBP for predicting Protein-binding RNA. In order
to learn the contextual deep representation of RNA sequences,
we employed the Masked Language Modeling and devised
a pre-training task integrating Binding Function Prediction
to characterize the functional semantic information of k-mer
sequences in various contexts. Furthermore, unlike current
approaches that separately extract RNA sequence and struc-
tural features, our model incorporates a Structural Construction
Model, enabling the Encoder to achieve better feature repre-
sentation and fusion of sequence-structure-function features.
The experimental results demonstrate that MTP-RBP achieves
state-of-the-art performance on both the RBP-24 dataset and
the ENCODE dataset, outperforming established models such
as iDeepV, iDeepS, DeepCLIP, SA-Net, and WVDL. This
outcome serves as compelling evidence of the efficacy of our
proposed model.

Despite the promising performance of MTP-RBP, there
remains considerable potential for improvement. As RNA
structure prediction advances, integrating more accurate sec-
ondary and tertiary structure information could enhance the
structure construction pre-training task. Additionally, in terms
of functional characterization, our model focuses mainly on
RNA binding features. Since RNA-protein interactions are
influenced by various functional aspects, incorporating more
diverse pre-training tasks could provide a fuller functional
characterization. These improvements could further boost
MTP-RBP’s performance. Moreover, this sequence-structure-
function integrated framework holds promise for broad appli-
cation across various biological domains.

REFERENCES

[1] M. Ramanathan, D. F. Porter, and P. A. Khavari, “Methods to study
RNA-protein interactions,” Nat. Methods, p. 225-234, Mar 2019.

[2] M. T. Weirauch et al., “Evaluation of methods for modeling transcription
factor sequence specificity,” Nat. Biotechnol., vol. 31, no. 2, p. 126-134,
Feb 2013.

[3] J. Yan, S. Friedrich, and L. Kurgan, “A comprehensive comparative re-
view of sequence-based predictors of DNA- and RNA-binding residues,”
Brief. Bioinf., p. 88-105, Jan 2016.

[4] S. He, E. Valkov, S. Cheloufi, and J. Murn, “The nexus between RNA-
binding proteins and their effectors,” Nat. Rev. Genet., vol. 24, no. 5,
pp. 276-294, 2023.

[5] M. Corley, M. C. Burns, and G. W. Yeo, “How RNA-binding proteins
interact with RNA: molecules and mechanisms,” Mol. Cell, vol. 78,
no. 1, pp. 9-29, 2020.

[6] E. Jankowsky and M. E. Harris, “Specificity and nonspecificity in
RNA-protein interactions,” Nat. Rev. Mol. Cell Biol., vol. 16, no. 9,
p. 533-544, Sep 2015.

[7]1 B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting
the sequence specificities of DNA-and RNA-binding proteins by deep
learning,” Nature Biotechnol., vol. 33, no. 8, pp. 831-838, 2015.

[8] D. Quang and X. Xie, “DanQ: a hybrid convolutional and recurrent deep
neural network for quantifying the function of DNA sequences,” Nucleic
Acids Res., vol. 44, no. 11, pp. e107—e107, 2016.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on April 18,2025 at 10:51:20 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCBBI0.2025.3556876

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

A. G. B. Grgnning et al., “DeepCLIP: predicting the effect of mutations
on protein—-RNA binding with deep learning,” Nucleic Acids Res.,
vol. 48, no. 13, pp. 7099-7118, 2020.

Z. o. Pan, “MCNN: Multiple Convolutional Neural Networks for RNA-
Protein Binding Sites Prediction,” IEEE/ACM Trans. Comput. Biol.
Bioinf., vol. 20, no. 2, pp. 1180-1187, 2023.

Z. Pan et al., “WVDL: weighted voting deep learning model for
predicting RNA-protein binding sites,” IEEE/ACM Trans. Comput. Biol.
Bioinf., 2023.

X. Wang, M. Zhang, C. Long, L. Yao, and M. Zhu, “Self-Attention
Based Neural Network for Predicting RNA-Protein Binding Sites,”
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 20, no. 2, pp. 1469-1479,
2023.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

Y. Ji, Z. Zhou, H. Liu, and R. V. Davuluri, “DNABERT: pre-trained
Bidirectional Encoder Representations from Transformers model for
DNA-language in genome,” Bioinformatics, vol. 37, no. 15, pp. 2112—
2120, 2021.

K. Yamada and M. Hamada, “Prediction of RNA—protein interactions
using a nucleotide language model,” Bioinformatics Advances, vol. 2,
no. 1, p. vbac023, 2022.

J. Chen et al., “Interpretable rna foundation model from unannotated
data for highly accurate rna structure and function predictions,” arXiv
preprint arXiv:2204.00300, 2022.

X. Pan, P. Rijnbeek, J. Yan, and H.-B. Shen, “Prediction of RNA-protein
sequence and structure binding preferences using deep convolutional and
recurrent neural networks,” BMC genomics, vol. 19, pp. 1-11, 2018.

J. Wang et al., “EDLMFC: an ensemble deep learning framework
with multi-scale features combination for ncRNA-protein interaction
prediction,” BMC Bioinf., vol. 22, pp. 1-19, 2021.

Z. Shen, Q. Zhang, K. Han, and D.-s. Huang, “A Deep Learning Model
for RNA-Protein Binding Preference Prediction based on Hierarchical
LSTM and Attention Network,” IEEE/ACM Trans. Comput. Biol. Bioinf.,
p. 1-1, Jan 2020.

Y. Liu, W. Gong, Z. Yang, and C. Li, “SNB-PSSM: A spatial neighbor-
based PSSM used for protein-RNA binding site prediction,” J. Mol.
Recognit., vol. 34, no. 6, p. €2887, 2021.

Y. Liu, W. Gong, Y. Zhao, X. Deng, S. Zhang, and C. Li, “aPRBind:
protein—RNA interface prediction by combining sequence and I-
TASSER model-based structural features learned with convolutional
neural networks,” Bioinformatics, vol. 37, no. 7, pp. 937-942, 2021.
W. Wang et al., “MAHyNet: Parallel Hybrid Network for RNA-Protein
Binding Sites Prediction Based on Multi-Head Attention and Expecta-
tion Pooling,” IEEE/ACM Trans. Comput. Biol. Bioinf., no. 01, pp. 1-12,
2024.

C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to fine-tune bert for text
classification?” in Chinese Computational Linguistics. Cham: Springer,
2019, pp. 194-206.

D. Maticzka, S. J. Lange, F. Costa, and R. Backofen, “GraphProt:
modeling binding preferences of RNA-binding proteins,” Genome Biol.,
p- R17, Jan 2014.

Gerstberger, Stefanie and Hafner, Markus and Tuschl, Thomas, “A
census of human RNA-binding proteins,” Nat. Rev. Genet., vol. 15,
no. 12, pp. 829-845, 2014.

G. Anders et al., “doRiNA: a database of RNA interactions in post-
transcriptional regulation,” Nucleic Acids Res., vol. 40, no. DI, p.
D180-D186, Jan 2012.

X. Pan, Y. Fang, X. Li, Y. Yang, and H.-B. Shen, “RBPsuite: RNA-
protein binding sites prediction suite based on deep learning,” BMC
genomics, vol. 21, pp. 1-8, 2020.

E. L. Van Nostrand et al., “A large-scale binding and functional map of
human RNA-binding proteins,” Nature, vol. 583, no. 7818, pp. 711-719,
2020.

R. Sennrich, B. Haddow, and A. Birch, “Neural Machine Translation
of Rare Words with Subword Units,” arXiv preprint arXiv:1508.07909,
2015.

A. R. Gruber, R. Lorenz, S. H. Bernhart, R. Neubock, and I. L. Hofacker,
“The vienna RNA websuite,” Nucleic Acids Res., vol. 36, no. suppl_2,
pp- W70-W74, 2008.

Y. Zhu, Z. Xie, Y. Li, M. Zhu, and Y.-P. P. Chen, “Research on folding
diversity in statistical learning methods for RNA secondary structure
prediction,” Int J Biol Sci., vol. 14, no. 8, p. 872, 2018.

C. B. Do, D. A. Woods, and S. Batzoglou, “CONTRAfold: RNA
secondary structure prediction without physics-based models,” Bioin-
formatics, vol. 22, no. 14, pp. €90-e98, 2006.

(33]

[34]

[35]

[36]

[37]

L. Huang, H. Zhang, D. Deng, K. Zhao, K. Liu, D. A. Hendrix, and D. H.
Mathews, “LinearFold: linear-time approximate RNA folding by 5’-
to-3’dynamic programming and beam search,” Bioinformatics, vol. 35,
no. 14, pp. i295-i304, 2019.

T. Binet, S. Padiolleau-Lefévre, S. Octave, B. Avalle, and I. Maffucci,
“Comparative study of single-stranded oligonucleotides secondary struc-
ture prediction tools,” BMC Bioinf., vol. 24, no. 1, p. 422, 2023.

A. Vaswani et al., “Attention is all you need,” Proc. Adv. Neural Inform.
Process. Syst., vol. 30, 2017.

X. Pan and H.-B. Shen, “Learning distributed representations of RNA
sequences and its application for predicting RNA-protein binding sites
with a convolutional neural network,” Neurocomputing, vol. 305, pp.
51-58, 2018.

D. H. Mathews, “Using an RNA secondary structure partition function
to determine confidence in base pairs predicted by free energy mini-
mization,” Rna, vol. 10, no. 8, pp. 1178-1190, 2004.

Lin Gan received the BS degree in computer sci-
ence and technology from the College of Computer
Science, Sichuan University, in 2023. He is cur-
rently working toward an MS degree in the College
of Computer Science, at Sichuan University. His
research interests include bioinformatics and deep
learning.

Xinyi Wang received his BS degree in computer sci-
ence and technology from the College of Computer
Science, Chongqing University, in 2020, and his MS
degree in Computer Science and Technology from
Sichuan University, in 2023. His research interests
include bioinformatics and deep learning.

Yi Zhou received her BS degree in computer sci-
ence and technology from the College of Computer
Science, Sichuan University, in 2021, and her MS
degree in Computer Science and Technology from
Sichuan University, in 2024. Her research interests
include Al4Science, large language models, and
graph machine learning.

Min Zhu received the PhD degree in applied math-
ematics from Sichuan University, in 2004. She is
currently a professor at the College of Computer
Science, Sichuan University, and has presided over a
number of national and provincial research projects.
Based on the research works, she has published
more than 100 academic papers in journals and
conferences. Her current research interests include
bioinformatics, visual analysis, and image process-
ing.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on April 18,2025 at 10:51:20 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



